def __getitem__(self, idx): inst = self.lineIndex[idx] author = inst[0] words = inst[1] batch = [] for word in words: if word >= len(self.w_authors[author]): word = (word + 37) % len(self.w_authors[author]) img_path, lb, gt, id = self.w_authors[author][word] img = cv2.imread(img_path, 0)[lb[0]:lb[1], lb[2]:lb[3]] #read as grayscale, crop word if img.shape[0] == 0 or img.shape[1] == 0: return self.__getitem__((idx + 1) % self.__len__()) if img is None: return None if img.shape[0] != self.img_height: if img.shape[0] < self.img_height and not self.warning: self.warning = True print("WARNING: upsampling image to fit size") percent = float(self.img_height) / img.shape[0] img = cv2.resize(img, (0, 0), fx=percent, fy=percent, interpolation=cv2.INTER_CUBIC) if img is None: return None if len(img.shape) == 2: img = img[..., None] if self.augmentation is not None: #img = augmentation.apply_random_color_rotation(img) img = augmentation.apply_tensmeyer_brightness(img) img = grid_distortion.warp_image(img) img = img.astype(np.float32) img = 1.0 - img / 128.0 if len(gt) == 0: return None gt_label = string_utils.str2label_single(gt, self.char_to_idx) if self.styles: style_i = self.npr.choice(len(self.styles[author][id])) style = self.styles[author][id][style_i] else: style = None batch.append({ "image": img, "gt": gt, "style": style, "gt_label": gt_label, "name": '{}_{}'.format(author, word), "author": author }) #batch = [b for b in batch if b is not None] #These all should be the same size or error assert len(set([b['image'].shape[0] for b in batch])) == 1 assert len(set([b['image'].shape[2] for b in batch])) == 1 dim0 = batch[0]['image'].shape[0] dim1 = max([b['image'].shape[1] for b in batch]) dim2 = batch[0]['image'].shape[2] all_labels = [] label_lengths = [] input_batch = np.full((len(batch), dim0, dim1, dim2), PADDING_CONSTANT).astype(np.float32) for i in range(len(batch)): b_img = batch[i]['image'] #toPad = (dim1-b_img.shape[1]) input_batch[i, :, 0:b_img.shape[1], :] = b_img l = batch[i]['gt_label'] all_labels.append(l) label_lengths.append(len(l)) #all_labels = np.concatenate(all_labels) label_lengths = torch.IntTensor(label_lengths) max_len = label_lengths.max() all_labels = [ np.pad(l, ((0, max_len - l.shape[0]), ), 'constant') for l in all_labels ] all_labels = np.stack(all_labels, axis=1) images = input_batch.transpose([0, 3, 1, 2]) images = torch.from_numpy(images) labels = torch.from_numpy(all_labels.astype(np.int32)) #label_lengths = torch.from_numpy(label_lengths.astype(np.int32)) if batch[0]['style'] is not None: styles = np.stack([b['style'] for b in batch], axis=0) styles = torch.from_numpy(styles).float() else: styles = None return { "image": images, "mask": makeMask(images, self.mask_post), "label": labels, "style": styles, "label_lengths": label_lengths, "gt": [b['gt'] for b in batch], "name": [b['name'] for b in batch], "author": [b['author'] for b in batch] }
def __getitem__(self, idx): if self.train and self.refresh_self: if self.used_instances >= self.set_size: self.refresh_data(None, None, logged=False) self.used_instances = 0 self.used_instances += self.batch_size if self.augmentation is not None and 'affine' in self.augmentation: strech = (self.max_strech * 2) * np.random.random() - self.max_strech + 1 skew = (self.max_rot_rad * 2) * np.random.random() - self.max_rot_rad if self.include_stroke_aug: thickness_change = np.random.randint(-4, 5) fg_shade = np.random.random() * 0.25 + 0.75 bg_shade = np.random.random() * 0.2 blur_size = np.random.randint(2, 4) noise_sigma = np.random.random() * 0.02 batch = [] for b in range(self.batch_size): img_path = os.path.join(self.directory, '{}.png'.format(idx + b)) img = cv2.imread(img_path, 0) if img is None: print('Error, could not read {}'.format(img_path)) return self[(idx + 1) % len(self)] if self.augmentation == 'affine': if img.shape[1] * strech > self.max_width: strech = self.max_width / img.shape[1] if img.shape[1] > self.max_width: percent = float(self.max_width) / img.shape[1] img = cv2.resize(img, (0, 0), fx=percent, fy=1, interpolation=cv2.INTER_CUBIC) if img.shape[1] > self.clip_width: img = img[:, :self.clip_width] if self.use_fg_mask: th, fg_mask = cv2.threshold( img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) fg_mask = 255 - fg_mask ele = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9)) fg_mask = cv2.dilate(fg_mask, ele) fg_mask = fg_mask / 255 else: fg_mask = None if len(img.shape) == 2: img = img[..., None] if self.augmentation is not None: #img = augmentation.apply_random_color_rotation(img) if 'affine' in self.augmentation: img, fg_mask = augmentation.affine_trans( img, fg_mask, skew, strech) if 'brightness' in self.augmentation: img = augmentation.apply_tensmeyer_brightness(img) assert (fg_mask is None) if 'warp' in self.augmentation and random.random( ) < self.warp_freq: try: img = grid_distortion.warp_image(img) except cv2.error as e: print(e) print(img.shape) assert (fg_mask is None) if 'invert' in self.augmentation and random.random() < 0.25: img = 1 - img if self.include_stroke_aug: new_img = augmentation.change_thickness( img, thickness_change, fg_shade, bg_shade, blur_size, noise_sigma) new_img = new_img * 2 - 1.0 if len(img.shape) == 2: img = img[..., None] img = img.astype(np.float32) img = 1.0 - img / 128.0 if self.train: gt = self.labels[idx] else: with open(self.gt_filename) as f: for i in range(0, idx + 1): gt = f.readline() gt = gt.strip() if gt is None: #metadata = pyexiv2.ImageMetadata(img_path) #metadata.read() #metadata = piexif.load(img_path) #if 'gt' in metadata: # gt = metadata['gt'] #else: print('Error unknown label for image: {}'.format(img_path)) return self.__getitem__((idx + 7) % self.set_size) gt_label = string_utils.str2label_single(gt, self.char_to_idx) font_idx = '?' toRet = { "image": img, "gt": gt, "gt_label": gt_label, "author": font_idx, "name": '{}_{}'.format(idx + b, font_idx), "style": None, "spaced_label": None } if self.use_fg_mask: toRet['fg_mask'] = fg_mask if self.include_stroke_aug: toRet['changed_image'] = new_img batch.append(toRet) dim0 = batch[0]['image'].shape[0] dim1 = max([b['image'].shape[1] for b in batch]) dim2 = batch[0]['image'].shape[2] all_labels = [] label_lengths = [] if self.spaced_by_name is not None: spaced_labels = [] else: spaced_labels = None max_spaced_len = 0 input_batch = np.full((len(batch), dim0, dim1, dim2), PADDING_CONSTANT).astype(np.float32) if self.use_fg_mask: fg_masks = np.full((len(batch), dim0, dim1, 1), 0).astype(np.float32) if self.include_stroke_aug: changed_batch = np.full((len(batch), dim0, dim1, dim2), PADDING_CONSTANT).astype(np.float32) for i in range(len(batch)): b_img = batch[i]['image'] toPad = (dim1 - b_img.shape[1]) if 'center' in batch[0] and batch[0]['center']: toPad //= 2 else: toPad = 0 input_batch[i, :, toPad:toPad + b_img.shape[1], :] = b_img if self.use_fg_mask: fg_masks[i, :, toPad:toPad + b_img.shape[1], 0] = batch[i]['fg_mask'] if self.include_stroke_aug: changed_batch[i, :, toPad:toPad + b_img.shape[1], 0] = batch[i]['changed_image'] l = batch[i]['gt_label'] all_labels.append(l) label_lengths.append(len(l)) if spaced_labels is not None: sl = batch[i]['spaced_label'] spaced_labels.append(sl) max_spaced_len = max(max_spaced_len, sl.shape[0]) #all_labels = np.concatenate(all_labels) label_lengths = torch.IntTensor(label_lengths) max_len = label_lengths.max() all_labels = [ np.pad(l, ((0, max_len - l.shape[0]), ), 'constant') for l in all_labels ] all_labels = np.stack(all_labels, axis=1) if self.spaced_by_name is not None: spaced_labels = [ np.pad(l, ((0, max_spaced_len - l.shape[0]), (0, 0)), 'constant') for l in spaced_labels ] ddd = spaced_labels spaced_labels = np.concatenate(spaced_labels, axis=1) spaced_labels = torch.from_numpy(spaced_labels) assert (spaced_labels.size(1) == len(batch)) images = input_batch.transpose([0, 3, 1, 2]) images = torch.from_numpy(images) labels = torch.from_numpy(all_labels.astype(np.int32)) #label_lengths = torch.from_numpy(label_lengths.astype(np.int32)) if self.use_fg_mask: fg_masks = fg_masks.transpose([0, 3, 1, 2]) fg_masks = torch.from_numpy(fg_masks) if batch[0]['style'] is not None: styles = np.stack([b['style'] for b in batch], axis=0) styles = torch.from_numpy(styles).float() else: styles = None mask, top_and_bottom, center_line = makeMask(images, self.mask_post, self.mask_random) toRet = { "image": images, "mask": mask, "top_and_bottom": top_and_bottom, "center_line": center_line, "label": labels, "style": styles, "label_lengths": label_lengths, "gt": [b['gt'] for b in batch], "spaced_label": spaced_labels, "name": [b['name'] for b in batch], "author": [b['author'] for b in batch], } if self.use_fg_mask: toRet['fg_mask'] = fg_masks if self.include_stroke_aug: changed_images = changed_batch.transpose([0, 3, 1, 2]) changed_images = torch.from_numpy(changed_images) toRet['changed_image'] = changed_images return toRet
def __getitem__(self, idx): if type( self.augmentation) is str and 'affine' in self.augmentation: strech = (self.max_strech*2)*np.random.random() - self.max_strech +1 #self.max_rot_rad = self.max_rot_deg/180 * np.pi skew = (self.max_rot_rad*2)*np.random.random() - self.max_rot_rad if self.include_stroke_aug: thickness_change= np.random.randint(-4,5) fg_shade = np.random.random()*0.25 + 0.75 bg_shade = np.random.random()*0.2 blur_size = np.random.randint(2,4) noise_sigma = np.random.random()*0.02 batch=[] if self.triplet=='hard': authors = random.sample(self.authors.keys(),self.triplet_author_size) alines=[] for author in authors: if len(self.authors[author])>=self.triplet_sample_size*self.batch_size: lines = random.sample(range(len(self.authors[author])),self.triplet_sample_size*self.batch_size) else: lines = list(range(len(self.authors[author]))) random.shuffle(lines) dif = self.triplet_sample_size*self.batch_size-len(self.authors[author]) lines += lines[:dif] alines += [(author,l) for l in lines] else: inst = self.lineIndex[idx] author=inst[0] lines=inst[1] alines = [(author,l) for l in lines] used_lines = set(lines) if self.triplet: if len(self.authors[author])<=2*self.batch_size: for l in range(len(self.authors[author])): if l not in used_lines: alines.append((author,l)) if len(alines)<2*self.batch_size: dif = 2*self.batch_size - len(alines) for i in range(dif): alines.append(alines[self.batch_size+i]) else: unused_lines = set(range(len(self.authors[author])))-used_lines for i in range(self.batch_size): l = random.select(unused_lines) unused_lines.remove(l) alines.append((author,l)) other_authors = set(range(len(self.authors))) other_authors.remove(author) author = random.select(other_authors) unused_lines = set(range(len(self.authors[author])))-used_lines for i in range(self.batch_size): l = random.select(unused_lines) unused_lines.remove(l) alines.append((author,l)) images=[] for author,line in alines: if line>=len(self.authors[author]): line = (line+37)%len(self.authors[author]) img_path, lb, gt = self.authors[author][line] img_path = os.path.join(self.dirPath,'images_gray',img_path) if self.no_spaces: gt = gt.replace(' ','') if type(self.augmentation) is str and 'normalization' in self.augmentation and self.normalized_dir is not None and os.path.exists(os.path.join(self.normalized_dir,'{}_{}.png'.format(author,line))): img = cv2.imread(os.path.join(self.normalized_dir,'{}_{}.png'.format(author,line)),0) readNorm=True else: img = cv2.imread(img_path,0) if img is None: print('Error, could not read image: {}'.format(img_path)) return None lb[0] = max(lb[0],0) lb[2] = max(lb[2],0) lb[1] = min(lb[1],img.shape[0]) lb[3] = min(lb[3],img.shape[1]) img = img[lb[0]:lb[1],lb[2]:lb[3]] #read as grayscale, crop line readNorm=False if img.shape[0] != self.img_height: if img.shape[0] < self.img_height and not self.warning: self.warning = True print("WARNING: upsampling image to fit size") percent = float(self.img_height) / img.shape[0] if img.shape[1]*percent > self.max_width: percent = self.max_width/img.shape[1] img = cv2.resize(img, (0,0), fx=percent, fy=percent, interpolation = cv2.INTER_CUBIC) if img.shape[0]<self.img_height: diff = self.img_height-img.shape[0] img = np.pad(img,((diff//2,diff//2+diff%2),(0,0)),'constant',constant_values=255) elif img.shape[1]> self.max_width: percent = self.max_width/img.shape[1] img = cv2.resize(img, (0,0), fx=percent, fy=percent, interpolation = cv2.INTER_CUBIC) if img.shape[0]<self.img_height: diff = self.img_height-img.shape[0] img = np.pad(img,((diff//2,diff//2+diff%2),(0,0)),'constant',constant_values=255) if self.augmentation=='affine': if img.shape[1]*strech > self.max_width: strech = self.max_width/img.shape[1] images.append( (line,gt,img,author) ) #we split the processing here so that strech will be adjusted for longest image in author batch for line,gt,img,author in images: if self.fg_masks_dir is not None: fg_path = os.path.join(self.fg_masks_dir,'{}_{}.png'.format(author,line)) fg_mask = cv2.imread(fg_path,0) fg_mask = fg_mask/255 if fg_mask.shape!=img[:,:].shape: print('Error, fg_mask ({}, {}) not the same size as image ({})'.format(fg_path,fg_mask.shape,img[:,:,0].shape)) th,fg_mask = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) fg_mask = 255-fg_mask ele = cv2.getStructuringElement( cv2.MORPH_ELLIPSE, (9,9) ) fg_mask = cv2.dilate(fg_mask,ele) fg_mask = fg_mask/255 else: fg_mask=None if type(self.augmentation) is str and 'normalization' in self.augmentation and not readNorm: img = normalize_line.deskew(img) img = normalize_line.skeletonize(img) if self.normalized_dir is not None: cv2.imwrite(os.path.join(self.normalized_dir,'{}_{}.png'.format(author,line)),img) if type(self.augmentation) is str and 'affine' in self.augmentation: img,fg_mask = augmentation.affine_trans(img,fg_mask,skew,strech) elif self.augmentation is not None and (type(self.augmentation) is not None or 'warp' in self.augmentation): #img = augmentation.apply_random_color_rotation(img) img = augmentation.apply_tensmeyer_brightness(img) img = grid_distortion.warp_image(img) assert(fg_mask is None) if self.include_stroke_aug: new_img = augmentation.change_thickness(img,thickness_change,fg_shade,bg_shade,blur_size,noise_sigma) if len(new_img.shape)==2: new_img = new_img[...,None] new_img = new_img*2 -1.0 if len(img.shape)==2: img = img[...,None] img = img.astype(np.float32) if self.remove_bg: img = 1.0 - img / 256.0 #kernel = torch.FloatTensor(7,7).fill_(1/49) #blurred_mask = F.conv2d(fg_mask,kernel,padding=3) blurred_mask = cv2.blur(fg_mask,(7,7)) img *= blurred_mask[...,None] img = 2*img -1 else: img = 1.0 - img / 128.0 if len(gt) == 0: return None gt_label = string_utils.str2label_single(gt, self.char_to_idx) if self.styles: style_i = self.npr.choice(len(self.styles[author][id])) style = self.styles[author][id][style_i] else: style=None name = '{}_{}'.format(author,line) if self.identity_spaced: spaced_label = gt_label[:,None].astype(np.long) else: spaced_label = None if self.spaced_by_name is None else self.spaced_by_name[name] if spaced_label is not None: assert(spaced_label.shape[1]==1) toAppend= { "image": img, "gt": gt, "style": style, "gt_label": gt_label, "spaced_label": spaced_label, "name": name, "center": self.center, "author": author, "author_idx": self.author_list.index(author) } if self.fg_masks_dir is not None: toAppend['fg_mask'] = fg_mask if self.include_stroke_aug: toAppend['changed_image'] = new_img batch.append(toAppend) #batch = [b for b in batch if b is not None] #These all should be the same size or error assert len(set([b['image'].shape[0] for b in batch])) == 1 assert len(set([b['image'].shape[2] for b in batch])) == 1 dim0 = batch[0]['image'].shape[0] dim1 = max([b['image'].shape[1] for b in batch]) dim2 = batch[0]['image'].shape[2] all_labels = [] label_lengths = [] if self.spaced_by_name is not None or self.identity_spaced: spaced_labels = [] else: spaced_labels = None max_spaced_len=0 input_batch = np.full((len(batch), dim0, dim1, dim2), PADDING_CONSTANT).astype(np.float32) if self.fg_masks_dir is not None: fg_masks = np.full((len(batch), dim0, dim1, 1), 0).astype(np.float32) if self.include_stroke_aug: changed_batch = np.full((len(batch), dim0, dim1, dim2), PADDING_CONSTANT).astype(np.float32) for i in range(len(batch)): b_img = batch[i]['image'] toPad = (dim1-b_img.shape[1]) if 'center' in batch[0] and batch[0]['center']: toPad //=2 else: toPad = 0 input_batch[i,:,toPad:toPad+b_img.shape[1],:] = b_img if self.fg_masks_dir is not None: fg_masks[i,:,toPad:toPad+b_img.shape[1],0] = batch[i]['fg_mask'] if self.include_stroke_aug: changed_batch[i,:,toPad:toPad+b_img.shape[1],:] = batch[i]['changed_image'] l = batch[i]['gt_label'] all_labels.append(l) label_lengths.append(len(l)) if spaced_labels is not None: sl = batch[i]['spaced_label'] spaced_labels.append(sl) max_spaced_len = max(max_spaced_len,sl.shape[0]) #all_labels = np.concatenate(all_labels) label_lengths = torch.IntTensor(label_lengths) max_len = label_lengths.max() all_labels = [np.pad(l,((0,max_len-l.shape[0]),),'constant') for l in all_labels] all_labels = np.stack(all_labels,axis=1) if self.spaced_by_name is not None or self.identity_spaced: spaced_labels = [np.pad(l,((0,max_spaced_len-l.shape[0]),(0,0)),'constant') for l in spaced_labels] ddd = spaced_labels spaced_labels = np.concatenate(spaced_labels,axis=1) spaced_labels = torch.from_numpy(spaced_labels) assert(spaced_labels.size(1) == len(batch)) images = input_batch.transpose([0,3,1,2]) images = torch.from_numpy(images) labels = torch.from_numpy(all_labels.astype(np.int32)) #label_lengths = torch.from_numpy(label_lengths.astype(np.int32)) if self.fg_masks_dir is not None: fg_masks = fg_masks.transpose([0,3,1,2]) fg_masks = torch.from_numpy(fg_masks) if batch[0]['style'] is not None: styles = np.stack([b['style'] for b in batch], axis=0) styles = torch.from_numpy(styles).float() else: styles=None mask, top_and_bottom, center_line = makeMask(images,self.mask_post, self.mask_random) ##DEBUG #for i in range(5): # mask2, top_and_bottom2 = makeMask(images,self.mask_post, self.mask_random) # #extra_masks.append(mask2) # mask2 = ((mask2[0,0]+1)/2).numpy().astype(np.uint8)*255 # cv2.imshow('mask{}'.format(i),mask2) #mask = ((mask[0,0]+1)/2).numpy().astype(np.uint8)*255 #cv2.imshow('mask'.format(i),mask) #cv2.waitKey() toRet= { "image": images, "mask": mask, "top_and_bottom": top_and_bottom, "center_line": center_line, "label": labels, "style": styles, "label_lengths": label_lengths, "gt": [b['gt'] for b in batch], "spaced_label": spaced_labels, "name": [b['name'] for b in batch], "author": [b['author'] for b in batch], "author_idx": [b['author_idx'] for b in batch], } if self.fg_masks_dir is not None: toRet['fg_mask'] = fg_masks if self.include_stroke_aug: changed_images = changed_batch.transpose([0,3,1,2]) changed_images = torch.from_numpy(changed_images) toRet['changed_image']=changed_images return toRet
def __getitem__(self, idx): inst = self.lineIndex[idx] author = inst[0] lines = inst[1] batch = [] for line in lines: if line >= len(self.authors[author]): line = (line + 37) % len(self.authors[author]) img_path, gt, pad_above, pad_below = self.authors[author][line] img = cv2.imread(img_path, 0) #read as grayscale if img is None: return None if pad_above < 0: img = img[-pad_above:, :] pad_above = 0 if pad_below < 0: img = img[:pad_below, :] pad_below = 0 #if pad_above>0 or pad_below>0: img = img = np.pad(img, ((pad_above, pad_below), (10, 10)), 'constant', constant_values=255) #we also pad a bit on the sides #print('{}, {} {}'.format(img_path,pad_above,pad_below)) if img.shape[0] != self.img_height: if img.shape[0] < self.img_height and not self.warning: self.warning = True print("WARNING: upsampling image to fit size") percent = float(self.img_height) / img.shape[0] if img.shape[1] * percent > self.max_width: percent = self.max_width / img.shape[1] img = cv2.resize(img, (0, 0), fx=percent, fy=percent, interpolation=cv2.INTER_CUBIC) if img.shape[0] < self.img_height: diff = self.img_height - img.shape[0] img = np.pad(img, ((diff // 2, diff // 2 + diff % 2), (0, 0)), 'constant', constant_values=255) if len(img.shape) == 2: img = img[..., None] if self.fg_masks_dir is not None: fg_path = os.path.join(self.fg_masks_dir, '{}_{}.png'.format(author, line)) fg_mask = cv2.imread(fg_path, 0) fg_mask = fg_mask / 255 if fg_mask.shape != img[:, :, 0].shape: print( 'Error, fg_mask ({}, {}) not the same size as image ({})' .format(fg_path, fg_mask.shape, img[:, :, 0].shape)) th, fg_mask = cv2.threshold( img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) fg_mask = 255 - fg_mask ele = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9)) fg_mask = cv2.dilate(fg_mask, ele) fg_mask = fg_mask / 255 if self.augmentation is not None: #img = augmentation.apply_random_color_rotation(img) img = augmentation.apply_tensmeyer_brightness(img) img = grid_distortion.warp_image(img) if len(img.shape) == 2: img = img[..., None] img = img.astype(np.float32) img = 1.0 - img / 128.0 if len(gt) == 0: return None gt_label = string_utils.str2label_single(gt, self.char_to_idx) if self.styles: style_i = self.npr.choice(len(self.styles[author][id])) style = self.styles[author][id][style_i] else: style = None name = img_path[img_path.rfind('/') + 1:img_path.rfind('.')] spaced_label = None if self.spaced_by_name is None else self.spaced_by_name[ img_path] if spaced_label is not None: assert (spaced_label.shape[1] == 1) toAppend = { "image": img, "gt": gt, "style": style, "gt_label": gt_label, "spaced_label": spaced_label, "name": name, "center": self.center, "author": author } if self.fg_masks_dir is not None: toAppend['fg_mask'] = fg_mask batch.append(toAppend) #batch = [b for b in batch if b is not None] #These all should be the same size or error assert len(set([b['image'].shape[0] for b in batch])) == 1 assert len(set([b['image'].shape[2] for b in batch])) == 1 dim0 = batch[0]['image'].shape[0] dim1 = max([b['image'].shape[1] for b in batch]) dim2 = batch[0]['image'].shape[2] all_labels = [] label_lengths = [] if self.spaced_by_name is not None: spaced_labels = [] else: spaced_labels = None max_spaced_len = 0 input_batch = np.full((len(batch), dim0, dim1, dim2), PADDING_CONSTANT).astype(np.float32) if self.fg_masks_dir is not None: fg_masks = np.full((len(batch), dim0, dim1, 1), 0).astype(np.float32) for i in range(len(batch)): b_img = batch[i]['image'] toPad = (dim1 - b_img.shape[1]) if 'center' in batch[0] and batch[0]['center']: toPad //= 2 else: toPad = 0 input_batch[i, :, toPad:toPad + b_img.shape[1], :] = b_img if self.fg_masks_dir is not None: fg_masks[i, :, toPad:toPad + b_img.shape[1], 0] = batch[i]['fg_mask'] l = batch[i]['gt_label'] all_labels.append(l) label_lengths.append(len(l)) if spaced_labels is not None: sl = batch[i]['spaced_label'] spaced_labels.append(sl) max_spaced_len = max(max_spaced_len, sl.shape[0]) #all_labels = np.concatenate(all_labels) label_lengths = torch.IntTensor(label_lengths) max_len = label_lengths.max() all_labels = [ np.pad(l, ((0, max_len - l.shape[0]), ), 'constant') for l in all_labels ] all_labels = np.stack(all_labels, axis=1) if self.spaced_by_name is not None: spaced_labels = [ np.pad(l, ((0, max_spaced_len - l.shape[0]), (0, 0)), 'constant') for l in spaced_labels ] ddd = spaced_labels spaced_labels = np.concatenate(spaced_labels, axis=1) spaced_labels = torch.from_numpy(spaced_labels) assert (spaced_labels.size(1) == len(batch)) images = input_batch.transpose([0, 3, 1, 2]) images = torch.from_numpy(images) labels = torch.from_numpy(all_labels.astype(np.int32)) #label_lengths = torch.from_numpy(label_lengths.astype(np.int32)) if self.fg_masks_dir is not None: fg_masks = fg_masks.transpose([0, 3, 1, 2]) fg_masks = torch.from_numpy(fg_masks) if batch[0]['style'] is not None: styles = np.stack([b['style'] for b in batch], axis=0) styles = torch.from_numpy(styles).float() else: styles = None mask, top_and_bottom, center_line = makeMask(images, self.mask_post, self.mask_random) ##DEBUG #for i in range(5): # mask2, top_and_bottom2 = makeMask(images,self.mask_post, self.mask_random) # #extra_masks.append(mask2) # mask2 = ((mask2[0,0]+1)/2).numpy().astype(np.uint8)*255 # cv2.imshow('mask{}'.format(i),mask2) #mask = ((mask[0,0]+1)/2).numpy().astype(np.uint8)*255 #cv2.imshow('mask'.format(i),mask) #cv2.waitKey() toRet = { "image": images, "mask": mask, "top_and_bottom": top_and_bottom, "center_line": center_line, "label": labels, "style": styles, "label_lengths": label_lengths, "gt": [b['gt'] for b in batch], "spaced_label": spaced_labels, "name": [b['name'] for b in batch], "author": [b['author'] for b in batch], } if self.fg_masks_dir is not None: toRet['fg_mask'] = fg_masks return toRet