コード例 #1
0
    def __init__(self, root_dir, transform=None):
        samples = parse_car_csv(root_dir)

        jpeg_images = [
            cv2.imread(
                os.path.join(root_dir, 'JPEGImages', sample_name + ".jpg"))
            for sample_name in samples
        ]

        positive_annotations = [
            os.path.join(root_dir, 'Annotations', sample_name + '_1.csv')
            for sample_name in samples
        ]
        negative_annotations = [
            os.path.join(root_dir, 'Annotations', sample_name + '_0.csv')
            for sample_name in samples
        ]

        # 边界框大小
        positive_sizes = list()
        negative_sizes = list()
        # 边界框坐标
        positive_rects = list()
        negative_rects = list()

        for annotation_path in positive_annotations:
            rects = np.loadtxt(annotation_path, dtype=np.int, delimiter=' ')
            # 存在文件为空或者文件中仅有单行数据
            if len(rects.shape) == 1:
                # 是否为单行
                if rects.shape[0] == 4:
                    positive_rects.append(rects)
                    positive_sizes.append(1)
                else:
                    positive_sizes.append(0)
            else:
                positive_rects.extend(rects)
                positive_sizes.append(len(rects))
        for annotation_path in negative_annotations:
            rects = np.loadtxt(annotation_path, dtype=np.int, delimiter=' ')
            # 和正样本规则一样
            if len(rects.shape) == 1:
                if rects.shape[0] == 4:
                    negative_rects.append(rects)
                    negative_sizes.append(1)
                else:
                    positive_sizes.append(0)
            else:
                negative_rects.extend(rects)
                negative_sizes.append(len(rects))

        self.transform = transform
        self.jpeg_images = jpeg_images
        self.positive_sizes = positive_sizes
        self.negative_sizes = negative_sizes
        self.positive_rects = positive_rects
        self.negative_rects = negative_rects
        self.total_positive_num = int(np.sum(positive_sizes))
        self.total_negative_num = int(np.sum(negative_sizes))
コード例 #2
0
    def __init__(self, root_dir, transform):
        """
        加载所有的图像以及正负样本边界框
        """
        self.transform = transform

        samples = util.parse_car_csv(root_dir)

        jpeg_images = list()
        annotation_dict = dict()
        for idx in range(len(samples)):
            sample_name = samples[idx]
            img = cv2.imread(
                os.path.join(root_dir, 'JPEGImages', sample_name + ".jpg"))
            h, w = img.shape[:2]
            jpeg_images.append(img)

            positive_annotation_path = os.path.join(root_dir, 'Annotations',
                                                    sample_name + '_1.csv')
            positive_annotations = np.loadtxt(positive_annotation_path,
                                              dtype=np.float,
                                              delimiter=' ')
            if len(positive_annotations.shape) == 1:
                positive_annotations = positive_annotations[np.newaxis, :]
            # print(positive_annotations.shape)
            positive_annotations[:, 0] /= w
            positive_annotations[:, 1] /= h
            positive_annotations[:, 2] /= w
            positive_annotations[:, 3] /= h
            # if len(positive_annotations) < 16:
            #     print(sample_name)

            negative_annotation_path = os.path.join(root_dir, 'Annotations',
                                                    sample_name + '_0.csv')
            negative_annotations = np.loadtxt(negative_annotation_path,
                                              dtype=np.float,
                                              delimiter=' ')
            negative_annotations[:, 0] /= w
            negative_annotations[:, 1] /= h
            negative_annotations[:, 2] /= w
            negative_annotations[:, 3] /= h

            annotation_dict[str(idx)] = {
                'positive': positive_annotations,
                'negative': negative_annotations
            }

        self.jpeg_images = jpeg_images
        self.annotation_dict = annotation_dict
コード例 #3
0
    def __init__(self, root_dir, transform=None):
        super(BBoxRegressionDataset, self).__init__()
        self.transform = transform

        samples = util.parse_car_csv(root_dir)
        jpeg_list = list()
        # 保存{'image_id': ?, 'positive': ?, 'bndbox': ?}
        box_list = list()
        for i in range(len(samples)):
            sample_name = samples[i]

            jpeg_path = os.path.join(root_dir, 'JPEGImages',
                                     sample_name + '.jpg')
            bndbox_path = os.path.join(root_dir, 'bndboxs',
                                       sample_name + '.csv')
            positive_path = os.path.join(root_dir, 'positive',
                                         sample_name + '.csv')

            jpeg_list.append(cv2.imread(jpeg_path))
            bndboxes = np.loadtxt(bndbox_path, dtype=np.int, delimiter=' ')
            positives = np.loadtxt(positive_path, dtype=np.int, delimiter=' ')

            if len(positives.shape) == 1:
                bndbox = self.get_bndbox(bndboxes, positives)
                box_list.append({
                    'image_id': i,
                    'positive': positives,
                    'bndbox': bndbox
                })
            else:
                for positive in positives:
                    bndbox = self.get_bndbox(bndboxes, positive)
                    box_list.append({
                        'image_id': i,
                        'positive': positive,
                        'bndbox': bndbox
                    })

        self.jpeg_list = jpeg_list
        self.box_list = box_list
コード例 #4
0
    for name in ['train', 'val']:
        src_root_dir = os.path.join(car_root_dir, name)
        src_annotation_dir = os.path.join(src_root_dir, 'Annotations')
        src_jpeg_dir = os.path.join(src_root_dir, 'JPEGImages')

        dst_root_dir = os.path.join(finetune_root_dir, name)
        dst_annotation_dir = os.path.join(dst_root_dir, 'Annotations')
        dst_jpeg_dir = os.path.join(dst_root_dir, 'JPEGImages')
        check_dir(dst_root_dir)
        check_dir(dst_annotation_dir)
        check_dir(dst_jpeg_dir)

        total_num_positive = 0
        total_num_negative = 0

        samples = parse_car_csv(src_root_dir)
        # 复制csv文件
        src_csv_path = os.path.join(src_root_dir, 'car.csv')
        dst_csv_path = os.path.join(dst_root_dir, 'car.csv')
        shutil.copyfile(src_csv_path, dst_csv_path)
        for sample_name in samples:
            since = time.time()

            src_annotation_path = os.path.join(src_annotation_dir,
                                               sample_name + '.xml')
            src_jpeg_path = os.path.join(src_jpeg_dir, sample_name + '.jpg')
            # 获取正负样本
            positive_list, negative_list = parse_annotation_jpeg(
                src_annotation_path, src_jpeg_path, gs)
            total_num_positive += len(positive_list)
            total_num_negative += len(negative_list)
コード例 #5
0
    def __init__(self, root_dir, transform=None):
        samples = parse_car_csv(root_dir)

        jpeg_images = list()
        positive_list = list()
        negative_list = list()
        for idx in range(len(samples)):
            sample_name = samples[idx]
            jpeg_images.append(
                cv2.imread(
                    os.path.join(root_dir, 'JPEGImages',
                                 sample_name + ".jpg")))

            positive_annotation_path = os.path.join(root_dir, 'Annotations',
                                                    sample_name + '_1.csv')
            positive_annotations = np.loadtxt(positive_annotation_path,
                                              dtype=np.int,
                                              delimiter=' ')
            # 考虑csv文件为空或者仅包含单个标注框
            if len(positive_annotations.shape) == 1:
                # 单个标注框坐标
                if positive_annotations.shape[0] == 4:
                    positive_dict = dict()

                    positive_dict['rect'] = positive_annotations
                    positive_dict['image_id'] = idx
                    # positive_dict['image_name'] = sample_name

                    positive_list.append(positive_dict)
            else:
                for positive_annotation in positive_annotations:
                    positive_dict = dict()

                    positive_dict['rect'] = positive_annotation
                    positive_dict['image_id'] = idx
                    # positive_dict['image_name'] = sample_name

                    positive_list.append(positive_dict)

            negative_annotation_path = os.path.join(root_dir, 'Annotations',
                                                    sample_name + '_0.csv')
            negative_annotations = np.loadtxt(negative_annotation_path,
                                              dtype=np.int,
                                              delimiter=' ')
            # 考虑csv文件为空或者仅包含单个标注框
            if len(negative_annotations.shape) == 1:
                # 单个标注框坐标
                if negative_annotations.shape[0] == 4:
                    negative_dict = dict()

                    negative_dict['rect'] = negative_annotations
                    negative_dict['image_id'] = idx
                    # negative_dict['image_name'] = sample_name

                    negative_list.append(negative_dict)
            else:
                for negative_annotation in negative_annotations:
                    negative_dict = dict()

                    negative_dict['rect'] = negative_annotation
                    negative_dict['image_id'] = idx
                    # negative_dict['image_name'] = sample_name

                    negative_list.append(negative_dict)

        self.transform = transform
        self.jpeg_images = jpeg_images
        self.positive_list = positive_list
        self.negative_list = negative_list
コード例 #6
0
    classifier_car_train_dir = '../../data/finetune_car/train'
    # positive
    positive_annotation_dir = os.path.join(classifier_car_train_dir, 'Annotations')

    dst_root_dir = '../../data/bbox_regression/'
    dst_jpeg_dir = os.path.join(dst_root_dir, 'JPEGImages')
    dst_bndbox_dir = os.path.join(dst_root_dir, 'bndboxs')
    dst_positive_dir = os.path.join(dst_root_dir, 'positive')

    util.check_dir(dst_root_dir)
    util.check_dir(dst_jpeg_dir)
    util.check_dir(dst_bndbox_dir)
    util.check_dir(dst_positive_dir)

    samples = util.parse_car_csv(voc_car_train_dir)
    res_samples = list()
    total_positive_num = 0
    for sample_name in samples:
        # 提取正样本边界框坐标(IoU>=0.5)
        positive_annotation_path = os.path.join(positive_annotation_dir, sample_name + '_1.csv')
        positive_bndboxes = np.loadtxt(positive_annotation_path, dtype=np.int, delimiter=' ')
        # 提取标注边界框
        gt_annotation_path = os.path.join(gt_annotation_dir, sample_name + '.xml')
        bndboxs = util.parse_xml(gt_annotation_path)
        # 计算符合条件(IoU>0.6)的候选建议
        positive_list = list()
        if len(positive_bndboxes.shape) == 1 and len(positive_bndboxes) != 0:
            scores = util.iou(positive_bndboxes, bndboxs)
            if np.max(scores) > 0.6:
                positive_list.append(positive_bndboxes)