コード例 #1
0
    def generate(self, source, destination = None, samples = 20, grid_width=480, grid_height=240):
        # Load the input and output of the graph
        input  = self.graph.get_tensor_by_name("en_input:0"        )
        output = self.graph.get_tensor_by_name("decoder/main_out:0")

        # For generating a single image for a source image
        if os.path.isfile(source):
            image = loader.load_image(source, self.image_size, self.image_size)
            batch = np.asarray([image for _ in range(self.batch_size)])
            preds = self.session.run(output, feed_dict = {input: batch})
            batch[0] = utils.add_border(batch[0],color = [1.0,0.0,0.0])
            grid  = np.concatenate((batch[0], preds[0]), axis=1)
            grid  = (grid * 255.0).astype(np.uint8)
        # For generating a grid of images from a directory of images
        elif os.path.isdir(source):
            data = loader.DataSet(images_dir = source,
                                  hard_load  = False,
                                  width      = self.image_size,
                                  height     = self.image_size)
            batch,_= data.next_batch(self.batch_size)

            preds  = self.session.run(output, feed_dict={input: batch})
            for i in range(samples):
                batch[i] = utils.add_border(batch[i],color = [1.0,0.0,0.0])
            grid = self.construct_image_grid(batch,preds,samples,grid_width,grid_height)
        else:
            print(source,"must be an image pathname or a directory of images")
            sys.exit()

        if destination:
            cv2.imwrite(destination, grid)
        else:
            cv2.imshow("images", grid)
            cv2.waitKey()
コード例 #2
0
 def construct_image_grid(self, batch, preds, samples, grid_width, grid_height):
     for i in range(samples):
         batch[i] = utils.add_border(batch[i],color = [1.0,0.0,0.0])
     N    = samples >> 1
     grid = [np.concatenate(tuple(batch[ :N]     ), axis = 1),
             np.concatenate(tuple(preds[ :N]     ), axis = 1),
             np.concatenate(tuple(batch[N:N << 1]), axis = 1),
             np.concatenate(tuple(preds[N:N << 1]), axis = 1)]
     grid = np.concatenate(tuple(grid), axis = 0)
     grid = cv2.resize(grid, (grid_width, grid_height),
                       interpolation = cv2.INTER_AREA)
     grid  = (grid * 255.0).astype(np.uint8)
     return grid
コード例 #3
0
def plot_tsne_images(data_x, data_y, tx, ty, out_dir, DATASET, args, seed):

    width = 1333
    height = 1000
    max_dim = 250

    colors = ['red', 'yellow', 'green', 'blue', 'orange', 'indianred']#, 'cyan', 'pink', 'orange', 'brown']

    full_image = Image.new('RGB', (width, height), color=(255,255,255))
    for idx, x in enumerate(data_x):
        tile = Image.fromarray(np.uint8(x * 255))
        #tile = Image.open(img)
        rs = max(4, tile.width / max_dim, tile.height / max_dim)
        tile = tile.resize((int(tile.width / rs),
                            int(tile.height / rs)),
                        Image.ANTIALIAS)
        tile = add_border(tile, border=2, color=colors[data_y[idx]])
        full_image.paste(tile, (int((width-max_dim) * tx[idx]),
                                int((height-max_dim) * ty[idx])))

    plt.figure(figsize = (8,6))
    plt.imshow(full_image)

    full_image.save(os.path.join(out_dir, f"{DATASET}_tsne_images_{seed}.png"))