def filter_close_places(from_place, limit_extent, place_list):
    allowed_list = []
    for p in place_list:
        d = utils.compute_distance(p, from_place)
        if d <= limit_extent:
            allowed_list.append(p)
    return allowed_list
コード例 #2
0
def get_next_place( limit_extent, place_list, from_place, prob_come_back ):

    if limit_extent < 0:
        return None

    r_ = random.randint(0, len(place_list) - 1)

    # select the first place
    if from_place is None:
        return place_list[r_]
    # otherwise select the next one from a given place _from_place
    else:

        allowed_list = filter_close_places(from_place, limit_extent, place_list)
        l = np.max([len(allowed_list) - 1, 1])
        # len is at least 1, which include from_place itself
        # if more than one PoI is found
        if len(allowed_list) > 1:
            r = random.randint(0, l)
            return allowed_list[r]
        # otherwise
        else:
            nn = get_nearest_place(from_place, place_list)

            distance = utils.compute_distance(from_place, nn)
            # returns the nearest place if the distance between it and from_place is shorter than limit_extent
            # otherwise do not retrieve any place
            return nn if distance < limit_extent else None
コード例 #3
0
def generate_trajectory(extent, place_list, today, prob_come_back, extent_factor):

    total_extent = 0.0
    from_place = None
    traj = []

    while True:

        tomorrow = today + TIME_DELTA

        place = get_next_place(extent - total_extent, place_list, from_place, prob_come_back)

        if place is None:
            break

        traj.append(([place], today, tomorrow))

        total_extent += utils.compute_distance(place, from_place) if from_place is not None else 0
        # total_extent = extent - traj_extent

        # print extent, total_extent
        # print from_place, place
        from_place = place
        # go forward in time
        today = tomorrow + TIME_DELTA

        # print extent, total_extent, utils.compute_trajectory_extent(traj)
    return traj
def get_nearest_place(given_place, place_list):
    min_dist = float("inf")
    p = None

    for place in place_list:
        if place[0] != given_place[0]:
            d = utils.compute_distance(place, given_place)
            if d < min_dist:
                min_dist = d
                p = place
    return p
コード例 #5
0
ファイル: Instance.py プロジェクト: carlocabras21/CVRPB
    def compute_distance_matrix(self):
        """
            This method produces the distance matrix by computing the Euclidean distance between each pair of nodes.

            :return: nothing, the distance matrix is an attribute of the instance itself
            """

        # initialization of the matrix dimension
        self.distance_matrix = np.zeros(
            (self.n_customers + 1, self.n_customers + 1))

        # linking customers
        customers = np.concatenate(
            ([self.depot_node], self.linehaul_list, self.backhaul_list))

        # Euclidean Distance between each pair of nodes
        for i in customers:
            for j in customers:
                self.distance_matrix[i.id, j.id] = compute_distance(i, j)
def generate_trajectory(n_points, extent, place_list, today):

    total_extent = extent / (n_points - 1)

    while True:
        points_count = 0
        from_place = None
        traj = []
        while points_count < n_points:

            tomorrow = today + TIME_DELTA

            place = get_next_place(total_extent, place_list, from_place)

            if place is None:
                break

            traj.append(([place], today, tomorrow))

            total_extent += utils.compute_distance(place, from_place) if from_place is not None else 0
            # total_extent = extent - traj_extent

            # print extent, total_extent
            # print from_place, place
            from_place = place
            # go forward in time
            today = tomorrow + TIME_DELTA

            points_count += 1

        print points_count, n_points
        if points_count == n_points:
            break

        # print extent, total_extent, utils.compute_trajectory_extent(traj)
    return traj