コード例 #1
0
    def run(self):
        for epoch in range(self.start_epoch, self.epochs):
            start = time.time()
            train_loss, valid_loss = self.run_one_epoch(epoch)
            end = time.time()
            
            print("[Epoch {}/{}] loss (train): {:.5f}, loss (valid): {:.5f}, {:.3f} [sec]".format(epoch+1, self.epochs, train_loss, valid_loss, end - start), flush=True)
            
            self.train_loss[epoch] = train_loss
            self.valid_loss[epoch] = valid_loss

            if (epoch + 1)%2 == 0:
                optim_dict = self.optimizer.state_dict()
                lr = optim_dict['param_groups'][0]['lr']
                optim_dict['param_groups'][0]['lr'] = 0.98 * lr
                self.optimizer.load_state_dict(optim_dict)
                
                print("Learning rate: {} -> {}".format(lr, 0.98 * lr))
            
            if valid_loss < self.best_loss:
                self.best_loss = valid_loss
                self.no_improvement = 0
                model_path = os.path.join(self.model_dir, "best.pth")
                self.save_model(epoch, model_path)
            else:
                self.no_improvement += 1
                if self.no_improvement >= 10:
                    print("Stop training")
                    break
            
            model_path = os.path.join(self.model_dir, "last.pth")
            self.save_model(epoch, model_path)
            
            save_path = os.path.join(self.loss_dir, "loss.png")
            draw_loss_curve(train_loss=self.train_loss[:epoch+1], valid_loss=self.valid_loss[:epoch+1], save_path=save_path)
コード例 #2
0
 def run(self):
     for epoch in range(self.start_epoch, self.epochs):
         start = time.time()
         train_loss = self.run_one_epoch(epoch)
         end = time.time()
         
         print("[Epoch {}/{}] loss (train): {:.5f}, {:.3f} [sec]".format(epoch+1, self.epochs, train_loss, end - start), flush=True)
         
         self.train_loss[epoch] = train_loss
         
         model_path = os.path.join(self.model_dir, "last.pth")
         self.save_model(epoch, model_path)
         
         save_path = os.path.join(self.loss_dir, "loss.png")
         draw_loss_curve(train_loss=self.train_loss[:epoch+1], save_path=save_path)
コード例 #3
0
    def run(self):
        for epoch in range(self.start_epoch, self.epochs):
            start = time.time()
            train_loss, valid_loss = self.run_one_epoch(epoch)
            end = time.time()

            print(
                "[Epoch {}/{}] loss (train): {:.5f}, loss (valid): {:.5f}, {:.3f} [sec]"
                .format(epoch + 1, self.epochs, train_loss, valid_loss,
                        end - start),
                flush=True)

            self.train_loss[epoch] = train_loss
            self.valid_loss[epoch] = valid_loss

            # Learning rate scheduling
            # torch.optim.lr_scheduler.ExponentialLR may be useful.
            lr_decay = self.lr_decay
            optim_dict = self.optimizer.state_dict()
            lr = optim_dict['param_groups'][0]['lr']
            print("Learning rate: {} -> {}".format(lr, lr_decay * lr))

            optim_dict['param_groups'][0]['lr'] = lr_decay * lr
            self.optimizer.load_state_dict(optim_dict)

            if valid_loss < self.best_loss:
                self.best_loss = valid_loss
                self.no_improvement = 0
                model_path = os.path.join(self.model_dir, "best.pth")
                self.save_model(epoch, model_path)
            else:
                if valid_loss >= self.prev_loss:
                    self.no_improvement += 1
                    if self.no_improvement >= 10:
                        print("Stop training")
                        break
                else:
                    self.no_improvement = 0

            self.prev_loss = valid_loss

            model_path = os.path.join(self.model_dir, "last.pth")
            self.save_model(epoch, model_path)

            save_path = os.path.join(self.loss_dir, "loss.png")
            draw_loss_curve(train_loss=self.train_loss[:epoch + 1],
                            valid_loss=self.valid_loss[:epoch + 1],
                            save_path=save_path)