コード例 #1
0
def get_valloader_only(toy,
                       rsyncing,
                       batch_size=16,
                       num_workers=os.cpu_count() - 1,
                       notebook=False,
                       cat=False):
    """

    :param toy:
    :param rsyncing:
    :param batch_size:
    :param num_workers:
    :param notebook:
    :return:
    """
    num_workers = 0
    if rsyncing:
        print('Rsynced data! (prepare feat)', flush=True)
    else:
        print('Using symbolic links! (prepare feat)', flush=True)
    print('Getting path ready..', flush=True)
    _, anno_path_val, png_path = get_paths(rsyncing, toy, notebook)

    start_time = time.time()
    print('Creating Coco Dataset..', flush=True)

    if not cat:
        valset = u.dataset_coco(
            png_path,
            anno_path_val,
            transform=torchvision.transforms.Compose(
                [t.Normalize(), t.BboxCrop(targetsize=224)]),
            bbox_transform=torchvision.transforms.Compose([t.GetFiveBBs()]),
            for_feature=True,
            cat=cat)
    else:
        valset = u.dataset_coco(
            png_path,
            anno_path_val,
            transform=torchvision.transforms.Compose(
                [t.Normalize(), t.BboxCropMult(targetsize=224)]),
            bbox_transform=torchvision.transforms.Compose([t.GetBBsMult()]),
            for_feature=True,
            cat=cat)
    print('Validation set has', len(valset), 'images', flush=True)

    valloader = torch.utils.data.DataLoader(valset,
                                            batch_size=batch_size,
                                            sampler=SequentialSampler(valset),
                                            num_workers=num_workers,
                                            collate_fn=u.mammo_collate)
    print('Validation loader has', len(valloader), 'batches', flush=True)

    total_time = time.time() - start_time
    print('Creating Datasets took {:.0f} seconds.'.format(total_time),
          flush=True)
    return valloader
コード例 #2
0
def get_wsl_cam(img_name, model='deepmil_multi'):
    wsl_dir = '/home/victor/PycharmProjects/active-learning-segmentation-baselines/wsl_cams'
    cams_dir = join(wsl_dir, '{}/npy/'.format(model))
    paths = get_paths(cams_dir, 'npy')
    file_names = get_files(cams_dir, 'npy')

    file_names = [f.replace('.npy', '') for f in file_names]
    wsl_cam_path = paths[file_names.index(img_name[0].replace('.bmp', ''))]

    return np.load(wsl_cam_path)
コード例 #3
0
def get_envs(cfg_dict, model, rsyncing, toy=False,f_one=False):
    if cfg_dict.EXPERIMENTAL_ENV:
        from environment_exp import MammoEnv
    else:
        from environment import MammoEnv
    one_img, max_num_imgs_train, max_num_imgs_val, _, _, _, _, _, dist_reward, dist_factor, with_hist = get_q_variants_oneImg_maxNumImgsT_maxNumImgsV_double_combi_paramNoise_recurrent_recSize_distReward_distFactor_hist(
        cfg_dict)
    _, zeta, eta, iota, _ = get_q_rewards_gamma_zeta_eta_iota_clipVal(cfg_dict)
    tau = get_q_explo_kappa_epochsEps_targetEps_tau_testTau_tauEpochs(cfg_dict)[3]

    print('Getting path ready..', flush=True)
    anno_path_train, anno_path_val, png_path = get_paths(rsyncing, toy)
    print('Creating Coco Datasets..', flush=True)

    if one_img:
        # png_path = os.path.join('/mnt/synology/breast/projects/lisa/koel/one_img_dataset_small', 'png')
        # anno_path_train = os.path.join('/mnt/synology/breast/projects/lisa/koel/one_img_dataset_small',
        #                                'annotations/mscoco_train_full.json')

        # png_path = os.path.join('/mnt/synology/breast/projects/lisa/koel/one_img_dataset', 'png')
        # anno_path_train = os.path.join('/mnt/synology/breast/projects/lisa/koel/one_img_dataset',
        #                                'annotations/mscoco_train_full.json')

        png_path = os.path.join('../one_img_dataset', 'png')
        anno_path_train = os.path.join('../one_img_dataset',
                                       'annotations/mscoco_train_full.json')

        # TODO
        # png_path = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset', 'png')
        # anno_path_train = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset',
        #                                'annotations/mscoco_train_full.json')

        trainset = u.dataset_coco(png_path, anno_path_train, add_border=get_addBorder(cfg))
        train_env = MammoEnv(trainset, eta=eta, zeta=zeta, tau=tau, model=model, one_img=one_img,
                             max_no_imgs=max_num_imgs_train, iota=iota,dist_reward = dist_reward, dist_factor=dist_factor, with_hist=with_hist)
        val_env = MammoEnv(trainset, eta=eta, zeta=zeta, tau=tau, model=model, one_img=one_img,
                           max_no_imgs=max_num_imgs_val, iota=iota,dist_reward = dist_reward, dist_factor=dist_factor, with_hist=with_hist)
    else:
        # TODO transform for downsampling
        print('Building training set', flush=True)
        trainset = u.dataset_coco(png_path, anno_path_train, add_border=get_addBorder(cfg))
        print('Training set has', len(trainset), 'images', flush=True)

        print('Building validation set', flush=True)
        valset = u.dataset_coco(png_path, anno_path_val, add_border=get_addBorder(cfg),f_one=f_one)
        print('Validation set has', len(valset), 'images', flush=True)

        print('Make train env', flush=True)
        train_env = MammoEnv(trainset, eta=eta, zeta=zeta, tau=tau, model=model, one_img=one_img,
                             max_no_imgs=max_num_imgs_train, iota=iota,dist_reward = dist_reward, dist_factor=dist_factor,with_hist=with_hist)
        print('Make val env', flush=True)
        val_env = MammoEnv(valset, eta=eta, zeta=zeta, tau=tau, model=model, one_img=one_img,
                           max_no_imgs=max_num_imgs_val, iota=iota,dist_reward = dist_reward, dist_factor=dist_factor,with_hist=with_hist,f_one=f_one)
    return train_env, val_env
コード例 #4
0
def test_screenpoint3():
    checkpoint_dir = '../../checkpoints_from_18_07_18/qnet_23'
    print(os.path.abspath(checkpoint_dir))
    rsyncing = False
    batch_size = 1
    multiprocessing = False
    # num_workers=os.cpu_count() - 1
    num_workers = 0
    data_aug_vec = [0.5, 0.25, 0.5, 0.5]
    toy = False
    notebook = False

    anno_path_train, anno_path_val, png_path = get_paths(
        rsyncing, toy, notebook)

    # TODO
    # png_path = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset', 'png')
    # anno_path_train = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset',
    #                                'annotations/mscoco_train_full.json')
    # anno_path_val = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset',
    #                                'annotations/mscoco_train_full.json')

    print('Creating Coco Datasets..', flush=True)
    # t.ToTensor()
    trans_img = torchvision.transforms.Compose([
        t.BboxCrop(targetsize=224),
        t.RandomFlipImg(prob=data_aug_vec[0]),
        t.RandomGammaImg(prob=data_aug_vec[1], use_normal_distribution=True)
    ])
    trans_bb = torchvision.transforms.Compose([
        t.GetFourBBs(),
        t.RandomTranslateBB(prob=data_aug_vec[2], pixel_range=10),
        t.RandomScaleBB(prob=data_aug_vec[3], max_percentage=0.1)
    ])

    trainset = u.dataset_coco(png_path,
                              anno_path_train,
                              transform=trans_img,
                              bbox_transform=trans_bb)
    print('Training set has', len(trainset), 'images', flush=True)

    valset = u.dataset_coco(png_path,
                            anno_path_val,
                            transform=torchvision.transforms.Compose(
                                [t.GetFourBBs(),
                                 t.BboxCrop(targetsize=224)]))
    print('Validation set has', len(valset), 'images', flush=True)

    print('Len trainset', len(trainset))
    print('Len valset', len(valset))
    print('Example set', trainset[3])

    trainloader = torch.utils.data.DataLoader(
        trainset,
        batch_size=batch_size,
        sampler=SequentialSampler(trainset),
        num_workers=num_workers,
        collate_fn=u.mammo_collate,
        pin_memory=multiprocessing)
    valloader = torch.utils.data.DataLoader(valset,
                                            batch_size=batch_size,
                                            sampler=SequentialSampler(valset),
                                            num_workers=num_workers,
                                            collate_fn=u.mammo_collate,
                                            pin_memory=multiprocessing)

    print('Len trainloader', len(trainloader))
    print('Len valloader', len(valloader))
    empty_batches = 0
    filled_batches = 0
    for idx, batch in enumerate(trainloader):
        # print('----')
        # print('{} th batch of {}'.format(idx,len(trainloader)),flush=True)
        # if len(batch['image_batch']) == 0:
        # 	empty_batches += 1
        # else:
        # 	filled_batches += 1
        # print(batch)
        # break
        pass
コード例 #5
0
def change_width_height_bbox():
    print('Get paths')
    anno_path_train, anno_path_val, _ = get_paths(False, toy=True)
    print('Open json')
コード例 #6
0
def get_sequential_trainloader(toy,
                               rsyncing,
                               batch_size=16,
                               num_workers=os.cpu_count() - 1,
                               data_aug_vec=[0.5, 0.25, 0.5, 0.5],
                               notebook=False):
    """

    :param toy:
    :param rsyncing:
    :param batch_size:
    :param num_workers:
    :param data_aug_vec:
    :param notebook:
    :return:
    """
    num_workers = 0
    if rsyncing:
        print('Rsynced data! (prepare feat)', flush=True)
    else:
        print('Using symbolic links! (prepare feat)', flush=True)
    print('Getting path ready..', flush=True)
    anno_path_train, _, png_path = get_paths(rsyncing, toy, notebook)

    # TODO
    # png_path = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset', 'png')
    # anno_path_train = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset',
    #                                'annotations/mscoco_train_full.json')

    trans_img = torchvision.transforms.Compose([
        t.Normalize(),
        t.BboxCrop(targetsize=224),
        t.RandomFlipImg(prob=data_aug_vec[0]),
        t.RandomGammaImg(prob=data_aug_vec[1], use_normal_distribution=True)
    ])
    trans_bb = torchvision.transforms.Compose([
        t.GetFiveBBs(),
        t.RandomTranslateBB(prob=data_aug_vec[2], pixel_range=10),
        t.RandomScaleBB(prob=data_aug_vec[3], max_percentage=0.1)
    ])

    start_time = time.time()
    print('Creating Coco Dataset..', flush=True)

    trainset = u.dataset_coco(png_path,
                              anno_path_train,
                              transform=trans_img,
                              bbox_transform=trans_bb,
                              for_feature=True)
    print('Training set has', len(trainset), 'images', flush=True)

    trainloader = torch.utils.data.DataLoader(
        trainset,
        batch_size=batch_size,
        sampler=SequentialSampler(trainset),
        num_workers=num_workers,
        collate_fn=u.mammo_collate)
    print('Training loader has', len(trainloader), 'batches', flush=True)

    total_time = time.time() - start_time
    print('Creating Datasets took {:.0f} seconds.'.format(total_time),
          flush=True)

    return trainloader
コード例 #7
0
def get_dataloaders(checkpoint_dir,
                    rsyncing,
                    selective_sampling=False,
                    warmup_trainer=None,
                    batch_size=16,
                    num_workers=os.cpu_count() - 1,
                    data_aug_vec=[0.5, 0.25, 0.5, 0.5],
                    toy=False,
                    notebook=False,
                    cat=False):
    """

    :param checkpoint_dir:
    :param rsyncing:
    :param selective_sampling:
    :param warmup_trainer:
    :param batch_size:
    :param num_workers:
    :param seed:
    :param data_aug_vec: probabilities for rnd flip, rnd gamma, rnd translation and rnd scale
    :param toy:
    :param notebook:
    :return:
    """
    #     if torch.cuda.is_available():
    #         mp.set_start_method('spawn')
    multiprocessing = False
    num_workers = 0
    sampler_size = 3000

    if rsyncing:
        print('Rsynced data! (prepare feat)', flush=True)
    else:
        print('Using symbolic links! (prepare feat)', flush=True)
    print('Getting path ready..', flush=True)
    anno_path_train, anno_path_val, png_path = get_paths(
        rsyncing, toy, notebook)

    # TODO
    # png_path = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset', 'png')
    # anno_path_train = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset',
    #                                'annotations/mscoco_train_full.json')
    # anno_path_val = os.path.join('/Users/lisa/Documents/Uni/ThesisDS/thesis_ds/one_img_dataset',
    #                                'annotations/mscoco_train_full.json')

    print('Creating Coco Datasets..', flush=True)
    # t.ToTensor()
    if not cat:
        trans_img = torchvision.transforms.Compose([
            t.Normalize(),
            t.BboxCrop(targetsize=224),
            t.RandomFlipImg(prob=data_aug_vec[0]),
            t.RandomGammaImg(prob=data_aug_vec[1],
                             use_normal_distribution=True)
        ])
        trans_bb = torchvision.transforms.Compose([
            t.GetFiveBBs(),
            t.RandomTranslateBB(prob=data_aug_vec[2], pixel_range=10),
            t.RandomScaleBB(prob=data_aug_vec[3], max_percentage=0.1)
        ])
    else:
        trans_img = torchvision.transforms.Compose([
            t.Normalize(),
            t.BboxCropMult(targetsize=224),
            t.RandomFlipImg(prob=data_aug_vec[0]),
            t.RandomGammaImg(prob=data_aug_vec[1],
                             use_normal_distribution=True)
        ])
        trans_bb = torchvision.transforms.Compose([
            t.GetBBsMult(),
            t.RandomTranslateBB(prob=data_aug_vec[2], pixel_range=10,
                                cat=True),
            t.RandomScaleBB(prob=data_aug_vec[3], max_percentage=0.1, cat=True)
        ])

    trainset = u.dataset_coco(png_path,
                              anno_path_train,
                              transform=trans_img,
                              bbox_transform=trans_bb,
                              for_feature=True,
                              cat=cat)
    print('Training set has', len(trainset), 'images', flush=True)

    if not cat:
        valset = u.dataset_coco(
            png_path,
            anno_path_val,
            transform=torchvision.transforms.Compose(
                [t.Normalize(), t.BboxCrop(targetsize=224)]),
            bbox_transform=torchvision.transforms.Compose([t.GetFiveBBs()]),
            for_feature=True,
            cat=cat)
    else:
        valset = u.dataset_coco(
            png_path,
            anno_path_val,
            transform=torchvision.transforms.Compose(
                [t.Normalize(), t.BboxCropMult(targetsize=224)]),
            bbox_transform=torchvision.transforms.Compose([t.GetBBsMult()]),
            for_feature=True,
            cat=cat)
    print('Validation set has', len(valset), 'images', flush=True)

    if selective_sampling:
        if not warmup_trainer:
            print(
                'Cannot calculate weights for selective sampling: no model given. Using normal sampling instead',
                flush=True)
            trainloader = torch.utils.data.DataLoader(
                trainset,
                batch_size=batch_size,
                sampler=RandomSampler(trainset),
                num_workers=num_workers,
                collate_fn=u.mammo_collate,
                pin_memory=multiprocessing)
        else:
            print('Getting weights for sampling..', flush=True)
            trainloader = torch.utils.data.DataLoader(
                trainset,
                batch_size=batch_size,
                sampler=SequentialSampler(trainset),
                num_workers=num_workers,
                collate_fn=u.mammo_collate,
                pin_memory=multiprocessing)
            weights = warmup_trainer.predict_dataset(trainloader)
            pkl.dump(
                weights,
                open(
                    os.path.join(checkpoint_dir,
                                 'weights_selective_train.pkl'), 'wb'))
            trainloader = torch.utils.data.DataLoader(
                trainset,
                batch_size=batch_size,
                sampler=WeightedRandomSampler(weights.double(),
                                              sampler_size,
                                              replacement=False),
                num_workers=num_workers,
                collate_fn=u.mammo_collate,
                pin_memory=multiprocessing)

    else:
        trainloader = torch.utils.data.DataLoader(
            trainset,
            batch_size=batch_size,
            sampler=RandomSampler(trainset),
            num_workers=num_workers,
            collate_fn=u.mammo_collate,
            pin_memory=multiprocessing)

    valloader = torch.utils.data.DataLoader(valset,
                                            batch_size=batch_size,
                                            sampler=SequentialSampler(valset),
                                            num_workers=num_workers,
                                            collate_fn=u.mammo_collate,
                                            pin_memory=multiprocessing)

    print('Training loader has', len(trainloader), 'batches', flush=True)
    print('Validation loader has', len(valloader), 'batches', flush=True)
    return trainloader, valloader