コード例 #1
0
def train_loop(train):
    # pdb.set_trace()
    train_dataset = TrainDataset(train,
                                 transform=get_transforms(opt, data='train'),
                                 opt=opt)

    train_loader = DataLoader(train_dataset,
                              batch_size=opt.batch_size,
                              shuffle=True,
                              num_workers=opt.num_workers,
                              pin_memory=True,
                              drop_last=True)
    print('Creating model...')
    model = create_model(opt, pretrained=True)
    optimizer = torch.optim.Adam(model.parameters(), opt.lr)
    scheduler = get_scheduler(optimizer)
    trainer = setiTrainer(opt, model, optimizer, scheduler=scheduler)
    trainer.set_device(opt.gpus, opt.device)

    start_epoch = 0
    best_loss = np.inf
    model_dir = os.path.join(opt.save_dir, 'weights')

    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(model, opt.load_model,
                                                   trainer.optimizer,
                                                   opt.resume, opt.lr,
                                                   opt.lr_step)
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        # train
        log_dict_train, outputs, labels = trainer.train(epoch, train_loader)
        avg_loss = log_dict_train['loss']
        score = get_score(labels, outputs)
        # print loss info and visualization loss
        epoch_info = 'Epoch: {} |'.format(epoch)
        for k, v in log_dict_train.items():
            logger.writer.add_scalar('train_{}'.format(k), v, epoch)
            epoch_info += '{} {:8f} | '.format(k, v)
        epoch_info += 'score {:8f} '.format(score)
        logger.log.info(epoch_info)
        logger.writer.add_scalar('lr',
                                 trainer.scheduler.get_last_lr()[0], epoch)
        # save model
        save_model(os.path.join(model_dir, f'{opt.arch}_model_last.pth'),
                   epoch, model)

        if avg_loss < best_loss:
            best_loss = avg_loss
            logger.log.info(
                f'Epoch {epoch} - Save Best Loss: {best_loss:.4f} Model')
            save_model(os.path.join(model_dir, f'{opt.arch}_best_loss.pth'),
                       epoch, model)
コード例 #2
0
def test_model(state,
               reference_tsv_path,
               reduced_number_of_data=None,
               strore_predicitions_fname=None):
    dataset = DatasetDcase2019Task4(os.path.join(cfg.workspace),
                                    base_feature_dir=os.path.join(
                                        cfg.workspace, "dataset", "features"),
                                    save_log_feature=False)

    crnn_kwargs = state["model"]["kwargs"]
    crnn = CRNN(**crnn_kwargs)
    crnn.load(parameters=state["model"]["state_dict"])
    LOG.info("Model loaded at epoch: {}".format(state["epoch"]))
    pooling_time_ratio = state["pooling_time_ratio"]

    crnn.load(parameters=state["model"]["state_dict"])
    scaler = Scaler()
    scaler.load_state_dict(state["scaler"])
    classes = cfg.classes
    many_hot_encoder = ManyHotEncoder.load_state_dict(
        state["many_hot_encoder"])

    crnn = crnn.eval()
    [crnn] = to_cuda_if_available([crnn])
    transforms_valid = get_transforms(cfg.max_frames, scaler=scaler)

    LOG.info(reference_tsv_path)
    df = dataset.initialize_and_get_df(reference_tsv_path,
                                       reduced_number_of_data)
    strong_dataload = DataLoadDf(df,
                                 dataset.get_feature_file,
                                 many_hot_encoder.encode_strong_df,
                                 transform=transforms_valid)

    predictions = get_predictions(crnn,
                                  strong_dataload,
                                  many_hot_encoder.decode_strong,
                                  pooling_time_ratio,
                                  save_predictions=strore_predicitions_fname)
    compute_strong_metrics(predictions, df)

    weak_dataload = DataLoadDf(df,
                               dataset.get_feature_file,
                               many_hot_encoder.encode_weak,
                               transform=transforms_valid)
    weak_metric = get_f_measure_by_class(
        crnn, len(classes), DataLoader(weak_dataload,
                                       batch_size=cfg.batch_size))
    LOG.info("Weak F1-score per class: \n {}".format(
        pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))
コード例 #3
0
def test_loop(test_data):
    # pdb.set_trace()

    test_dataset = TrainDataset(test_data,
                                transform=get_transforms(opt, data='valid'),
                                opt=opt,
                                is_train=False)

    test_loader = DataLoader(test_dataset,
                             batch_size=opt.batch_size,
                             shuffle=False,
                             num_workers=opt.num_workers,
                             pin_memory=True,
                             drop_last=False)
    print('Creating model...')
    model = create_model(opt, pretrained=False)
    set_device(model, opt.gpus, opt.device)
    model.eval()
    if opt.load_model != '':
        model = load_model(model, opt.load_model)

    result = []
    for batch in tqdm(test_loader):
        for k in batch:
            if k != 'meta':
                batch[k] = batch[k].to(device=opt.device, non_blocking=True)
        with torch.no_grad():
            output = model(batch['input']).cpu().sigmoid().numpy()
        result.append(output)
        del batch, output

    results = np.concatenate(result)
    res_df = test_data.copy()
    res_df['target'] = results
    res_df.to_csv()
    res_df.to_csv(osp.join(osp.dirname(opt.load_model), 'submit.csv'),
                  index=False,
                  columns=['id', 'target'])
コード例 #4
0
def train_loop(folds, fold):
    # pdb.set_trace()
    logger.log.info(f"========== fold: {fold} training ==========")
    trn_idx = folds[folds['fold'] != fold].index
    val_idx = folds[folds['fold'] == fold].index

    train_folds = folds.loc[trn_idx].reset_index(drop=True)
    valid_folds = folds.loc[val_idx].reset_index(drop=True)
    valid_labels = valid_folds[opt.target_col].values

    train_dataset = TrainDataset(train_folds,
                                 transform=get_transforms(opt, data='train'), opt=opt)
    valid_dataset = TrainDataset(valid_folds,
                                 transform=get_transforms(opt, data='valid'), opt=opt)

    train_loader = DataLoader(train_dataset,
                              batch_size=opt.batch_size,
                              shuffle=True,
                              num_workers=opt.num_workers, pin_memory=True, drop_last=True)
    val_loader = DataLoader(valid_dataset,
                              batch_size=opt.batch_size,
                              shuffle=False,
                              num_workers=opt.num_workers, pin_memory=True, drop_last=False)
    print('Creating model...')
    model = create_model(opt, pretrained=True)
    optimizer = torch.optim.Adam(model.parameters(), opt.lr)
    trainer = setiTrainer(opt, model, optimizer, scheduler=None)
    trainer.set_device(opt.gpus, opt.device)

    start_epoch = 0
    best_score = 0.
    best_loss = np.inf
    model_dir = os.path.join(opt.save_dir, 'weights')

    if opt.load_model != '':
        model, optimizer, start_epoch = load_model(
            model, opt.load_model, trainer.optimizer, opt.resume, opt.lr, opt.lr_step)
    for epoch in range(start_epoch + 1, opt.num_epochs + 1):
        # train
        log_dict_train, outputs, labels = trainer.train(epoch, train_loader)
        train_score = get_score(labels, outputs)

        # print loss info and visualization loss
        epoch_info = 'epoch: {} |'.format(epoch)
        for k, v in log_dict_train.items():
            logger.writer.add_scalar('train_fold{}_{}'.format(fold, k), v, epoch)
            epoch_info += '{} {:8f} | '.format(k, v)
        epoch_info += 'score {:8f} '.format(train_score)
        logger.log.info(epoch_info)

        # eval
        ret, preds, _ = trainer.val(epoch, val_loader)

        # get val scoring
        score = get_score(valid_labels, preds)

        avg_val_loss = ret['loss']
        logger.log.info(f'Epoch {epoch} - val Score: {score:.4f}')

        # save model
        save_model(os.path.join(model_dir, f'{opt.arch}_fold{fold}_model_last.pth'),
                   epoch, model, optimizer, preds)

        if epoch in opt.lr_step:
            lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1))
            print('Drop LR to', lr)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        if score > best_score:
            best_score = score
            logger.log.info(f'Epoch {epoch} - Save Best Score: {best_score:.4f} Model')
            save_model(os.path.join(model_dir, f'{opt.arch}_fold{fold}_best_score.pth'),
                       epoch, model, optimizer, preds)

        if avg_val_loss < best_loss:
            best_loss = avg_val_loss
            logger.log.info(f'Epoch {epoch} - Save Best Loss: {best_loss:.4f} Model')
            save_model(os.path.join(model_dir, f'{opt.arch}_fold{fold}_best_loss.pth'),
                       epoch, model, optimizer, preds)
    valid_folds['preds'] = torch.load(os.path.join(model_dir, f'{opt.arch}_fold{fold}_best_loss.pth'),
                                      map_location=torch.device('cpu'))['preds']
    return valid_folds
コード例 #5
0
ファイル: TestModel.py プロジェクト: aagnone3/dc19t2
def test_model(state, reduced_number_of_data, strore_predicitions_fname=None):
    crnn_kwargs = state["model"]["kwargs"]
    crnn = CRNN(**crnn_kwargs)
    crnn.load(parameters=state["model"]["state_dict"])
    LOG.info("Model loaded at epoch: {}".format(state["epoch"]))
    pooling_time_ratio = state["pooling_time_ratio"]

    crnn.load(parameters=state["model"]["state_dict"])
    scaler = Scaler()
    scaler.load_state_dict(state["scaler"])
    classes = cfg.classes
    many_hot_encoder = ManyHotEncoder.load_state_dict(
        state["many_hot_encoder"])

    # ##############
    # Validation
    # ##############
    crnn = crnn.eval()
    [crnn] = to_cuda_if_available([crnn])
    transforms_valid = get_transforms(cfg.max_frames, scaler=scaler)

    # # 2018
    # LOG.info("Eval 2018")
    # eval_2018_df = dataset.initialize_and_get_df(cfg.eval2018, reduced_number_of_data)
    # # Strong
    # eval_2018_strong = DataLoadDf(eval_2018_df, dataset.get_feature_file, many_hot_encoder.encode_strong_df,
    #                               transform=transforms_valid)
    # predictions = get_predictions(crnn, eval_2018_strong, many_hot_encoder.decode_strong)
    # compute_strong_metrics(predictions, eval_2018_df, pooling_time_ratio)
    # # Weak
    # eval_2018_weak = DataLoadDf(eval_2018_df, dataset.get_feature_file, many_hot_encoder.encode_weak,
    #                             transform=transforms_valid)
    # weak_metric = get_f_measure_by_class(crnn, len(classes), DataLoader(eval_2018_weak, batch_size=cfg.batch_size))
    # LOG.info("Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    # LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))

    # Validation 2019
    # LOG.info("Validation 2019 (original code)")
    # b_dataset = B_DatasetDcase2019Task4(cfg.workspace,
    #                                   base_feature_dir=os.path.join(cfg.workspace, 'dataset', 'features'),
    #                                   save_log_feature=False)
    # b_validation_df = b_dataset.initialize_and_get_df(cfg.validation, reduced_number_of_data)
    # b_validation_df.to_csv('old.csv')
    # b_validation_strong = B_DataLoadDf(b_validation_df,
    #                                  b_dataset.get_feature_file, many_hot_encoder.encode_strong_df,
    #                                  transform=transforms_valid)

    # predictions2 = get_predictions(crnn, b_validation_strong, many_hot_encoder.decode_strong,
    #                               save_predictions=strore_predicitions_fname)
    # compute_strong_metrics(predictions2, b_validation_df, pooling_time_ratio)

    # b_validation_weak = B_DataLoadDf(b_validation_df, b_dataset.get_feature_file, many_hot_encoder.encode_weak,
    #                              transform=transforms_valid)
    # weak_metric = get_f_measure_by_class(crnn, len(classes), DataLoader(b_validation_weak, batch_size=cfg.batch_size))
    # LOG.info("Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    # LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))

    # ============================================================================================
    # ============================================================================================
    # ============================================================================================

    dataset = DatasetDcase2019Task4(feature_dir=cfg.feature_dir,
                                    local_path=cfg.workspace,
                                    exp_tag=cfg.exp_tag,
                                    save_log_feature=False)
    # Validation 2019
    LOG.info("Validation 2019")
    validation_df = dataset.initialize_and_get_df(cfg.validation,
                                                  reduced_number_of_data)
    validation_strong = DataLoadDf(validation_df,
                                   dataset.get_feature_file,
                                   many_hot_encoder.encode_strong_df,
                                   transform=transforms_valid)

    predictions = get_predictions(crnn,
                                  validation_strong,
                                  many_hot_encoder.decode_strong,
                                  save_predictions=strore_predicitions_fname)
    vdf = validation_df.copy()
    vdf.filename = vdf.filename.str.replace('.npy', '.wav')
    pdf = predictions.copy()
    pdf.filename = pdf.filename.str.replace('.npy', '.wav')
    compute_strong_metrics(pdf, vdf, pooling_time_ratio)

    validation_weak = DataLoadDf(validation_df,
                                 dataset.get_feature_file,
                                 many_hot_encoder.encode_weak,
                                 transform=transforms_valid)
    weak_metric = get_f_measure_by_class(
        crnn, len(classes),
        DataLoader(validation_weak, batch_size=cfg.batch_size))
    LOG.info("Weak F1-score per class: \n {}".format(
        pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))
コード例 #6
0
    weak_df = dataset.initialize_and_get_df(cfg.weak, reduced_number_of_data)
    synthetic_df = dataset.initialize_and_get_df(cfg.synthetic,
                                                 reduced_number_of_data,
                                                 download=False)
    validation_df = dataset.initialize_and_get_df(cfg.validation,
                                                  reduced_number_of_data)

    classes = DatasetDcase2019Task4.get_classes(
        [weak_df, validation_df, synthetic_df])

    # Be careful, frames is max_frames // pooling_time_ratio because max_pooling is applied on time axis in the model
    many_hot_encoder = ManyHotEncoder(classes,
                                      n_frames=cfg.max_frames //
                                      pooling_time_ratio)

    transforms = get_transforms(cfg.max_frames)

    # Divide weak in train and valid
    train_weak_df = weak_df.sample(frac=0.8, random_state=26)
    valid_weak_df = weak_df.drop(train_weak_df.index).reset_index(drop=True)
    train_weak_df = train_weak_df.reset_index(drop=True)
    LOG.debug(valid_weak_df.event_labels.value_counts())
    train_weak_data = DataLoadDf(train_weak_df,
                                 dataset.get_feature_file,
                                 many_hot_encoder.encode_strong_df,
                                 transform=transforms)

    # Divide synthetic in train and valid
    filenames_train = synthetic_df.filename.drop_duplicates().sample(
        frac=0.8, random_state=26)
    train_synth_df = synthetic_df[synthetic_df.filename.isin(filenames_train)]
コード例 #7
0
ファイル: predict.py プロジェクト: PremiLabXJTLU/RAMSI
    f = output_file.open('w', encoding='utf-8')
    for filename, result, detail in zip(testset.im_list, results, details):
        if not isinstance(filename, Path):
            filename = Path(filename)
        f.write(f'{filename.name},{scripts[result]}\n')
    f.close()
    print(f'finish. writen as {args.output}')


if __name__ == "__main__":
    ckpt = load_ckpt(os.path.join(config['ckpt_dir'], args.ckpt))

    if not args.output:
        args.output = f"{ckpt['params']['model']}_{ckpt['config']['transform']['val']}_{ckpt['config']['input_size']}.txt"

    transform = get_transforms(ckpt['config']['transform']['val'])
    print(f'transform: {ckpt["config"]["transform"]["val"]}')
    print(f'scripts: {get_scripts()}')

    testset = TestSet(args.test_path, transform)
    print(f'testset: {args.test_path}')

    dataloader = DataLoader(testset, batch_size=args.batch_size, shuffle=False,
                            num_workers=config['num_workers'])

    num_classes = len(get_scripts())
    model = get_model(ckpt['params']['model'], num_classes, False)

    model = model.cuda()
    model.load_state_dict(ckpt['model'])
    model = nn.DataParallel(model, device_ids=list(range(len(args.gpu_ids))))
コード例 #8
0
                                    save_log_feature=False)

    train_df = dataset.initialize_and_get_df(cfg.train,
                                             reduced_number_of_data,
                                             training=True)
    validation_df = dataset.initialize_and_get_df(cfg.validation,
                                                  reduced_number_of_data,
                                                  training=True)
    test_df = dataset.initialize_and_get_df(cfg.test,
                                            reduced_number_of_data,
                                            training=True)

    many_hot_encoder = ManyHotEncoder(cfg.classes,
                                      n_frames=cfg.max_frames //
                                      pooling_time_ratio)
    transforms = get_transforms(cfg.max_frames)

    train_data = DataLoadDf(train_df,
                            dataset.get_feature_file,
                            many_hot_encoder.encode_weak,
                            transform=transforms)
    validation_data = DataLoadDf(validation_df,
                                 dataset.get_feature_file,
                                 many_hot_encoder.encode_weak,
                                 transform=transforms)
    test_data = DataLoadDf(test_df,
                           dataset.get_feature_file,
                           many_hot_encoder.encode_weak,
                           transform=transforms)

    list_dataset = [train_data]