コード例 #1
0
ファイル: tf_net.py プロジェクト: joshualley/VoiceScope
def main():
    words = load_words()
    sess = tf.InteractiveSession()
    path = PATH.DATASET_DIR+'test7x1x2.record'
    #iterator = read_record(path, epochs=10, batch_size=1024)
    iterator = read_from_npy(batch_size=1024)

    x, y = iterator.get_next()
    y = tf.cast(y, tf.int64)
    x = tf.reshape(x, (-1, 48,48,1))
    y_in = tf.one_hot(y, 3557, dtype=tf.int64)
    y_out = built_net(x)
    train_op, loss, acc = optimizer(y_in, y_out)
    tf.global_variables_initializer().run()
    t0 = time.time()
    for epoch in range(1, 100):
        for i in range(235):
            sess.run(train_op)
            if i%10 == 0:

                x_,y_ = sess.run([y,y_out])
                print('in: %s\nout: %s' %(x_[1:10], np.argmax(y_, 1)[1:10]))
                losses, accurary = sess.run([loss, acc])
                print('[==>] Epoch: %d \tStep: %d \tLoss: %s \tAcc: %s \tTime: %ss'
                      %(epoch, i, losses, accurary, round(time.time()-t0, 2)))
                t0 = time.time()
コード例 #2
0
ファイル: mdetect.py プロジェクト: joshualley/VoiceScope
def predict(imgs, model, xy, save=False, cls=None):
    img01 = imgs / 255
    #print(imgs)
    if cls == None:
        cls = load_words()
    st = time.time()
    predicts = model.predict(img01)

    result = ''
    new_xy = []
    for i, probabilities in enumerate(predicts):
        index_cls = np.argmax(probabilities)
        if index_cls == 3557:
            print(index_cls)
        if index_cls == 3557 or probabilities[index_cls] < 0.8:
            continue
        new_xy.append(xy[i])
        result += cls[index_cls]
        if save:
            nrootdir = ("./cut_image/")
            if not os.path.isdir(nrootdir):
                os.makedirs(nrootdir)
            cv2.imwrite(nrootdir + cls[index_cls] + ".jpg", imgs[i])
    #print('Result: %s' % (result))
    et = time.time()
    #print('花费时间: %s' % (et - st))
    return result, new_xy
コード例 #3
0
ファイル: mdetect.py プロジェクト: joshualley/VoiceScope
def get_frame_from_camera():

    print('Get serial...')
    p = serial.tools.list_ports.comports()[0]
    serialName = p[0]
    serialFd = serial.Serial(serialName, 9600, timeout=60)

    print('Loading classes...')
    cls = load_words()
    print('Loading model...')
    #model_path = PATH.MODEL_DIR + 'model28x3_1.h5'
    model_path = PATH.MODEL_DIR + 'model_keras/model.h5'
    model = keras.models.load_model(model_path)

    camera = cv2.VideoCapture(0)
    camera.set(3, 640)
    camera.set(4, 480)

    serialFd.write(b'@PlayFlashText#099$')

    state = RUN
    while True:
        _, frame = camera.read()
        w, h, c = frame.shape
        s = int(part_num / 2)
        w, h = int(w / part_num), int(h / part_num)
        focus_frame = frame[w * s:w * (s + 1), h * s:h * (s + 1), :]

        processed_frame, regions, xy = findContour(focus_frame)
        regions = np.array(regions)
        show_frame = draw_frame(serialFd, processed_frame, regions, xy, model,
                                cls)

        state = controler(state, serialFd)
        show_frame = action(state, show_frame)
        #cv2.rectangle(show_frame,(w*s, h*s),(w*(s+1), h*(s+1)),(255, 0, 0))
        cv2.imshow('processed frame', show_frame)
        key = cv2.waitKey(1)

        if key == ord('q'):
            break
    camera.release()
    cv2.destroyAllWindows()
コード例 #4
0
def predict(data, model, save=True, cls=None):
    im = np.round(data / 255.)
    if cls == None:
        cls = load_words()
    st = time.time()
    predicts = model.predict(im)
    result = ''
    for i, probabilities in enumerate(predicts):
        index = np.argmax(probabilities)
        if probabilities[index] < 0.01:
            continue
        result += cls[index]
        if save:
            nrootdir = ("./pic/")
            if not os.path.isdir(nrootdir):
                os.makedirs(nrootdir)
            cv2.imwrite(nrootdir + cls[index] + ".jpg", data[i])
    print('Result: %s' % (result))
    et = time.time()
    print('花费时间: %s' % (et - st))
    return result
コード例 #5
0
def main():
    cls = load_words()
    model_path = PATH.MODEL_DIR + 'model28x3_1.h5'
    print('Loading model...')
    model = K.models.load_model(model_path)

    train_font_dir = PATH.TRAIN_FONT_DIR
    fonts = read_fontnames(train_font_dir)

    while True:
        words = input('请输入要生成的图片文字\n')
        data = gene_data(words, [fonts[3]], train_font_dir)
        images = []
        for image in np.array(data):
            kernel = np.ones((1, 1), np.uint8)
            erosion = cv2.erode(image, kernel)
            kernel = np.ones((2, 2), np.uint8)
            dilation = cv2.dilate(erosion, kernel)
            dilation = np.round(dilation, 0)
            cv2.imshow('hh', dilation)
            cv2.waitKey(0)
            images.append(dilation)
        images = np.array(images).reshape(-1, 48, 48, 1)
        predict(images, model, cls=cls)
コード例 #6
0
import keras
from configuration.config import PATH

model_name = 'model1/model2.h5'
model = keras.models.load_model(PATH.MODEL_DIR + model_name)

import cv2
import numpy as np
import utils.utils as tool

im = cv2.imread('test_pic/13.jpg')
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im = im.reshape([1, 48, 48, 1])
r = model.predict(im)
r = np.argmax(r)
cls = tool.load_words()
print(cls[r])