コード例 #1
0
ファイル: RNN.py プロジェクト: iofu728/Model_retrieval
    def __init__(self,
                 n_in,
                 n_hidden,
                 n_out,
                 activation=T.tanh,
                 inner_activation=T.nnet.sigmoid,
                 output_type='real',
                 batch_size=200):
        self.activation = activation
        self.inner_activation = inner_activation
        self.output_type = output_type

        self.batch_size = batch_size
        self.n_hidden = n_hidden

        self.W_i = shared_common(gloroat_uniform((n_in, n_hidden)))
        self.U_i = shared_common(ortho_weight(n_hidden))
        self.b_i = shared_zeros((n_hidden, ))

        self.W_f = shared_common(gloroat_uniform((n_in, n_hidden)))
        self.U_f = shared_common(ortho_weight(n_hidden))
        self.b_f = shared_zeros((n_hidden, ))

        self.W_c = shared_common(gloroat_uniform((n_in, n_hidden)))
        self.U_c = shared_common(ortho_weight(n_hidden))
        self.b_c = shared_zeros((n_hidden, ))

        self.W_o = shared_common(gloroat_uniform((n_in, n_hidden)))
        self.U_o = shared_common(ortho_weight(n_hidden))
        self.b_o = shared_zeros((n_hidden, ))

        self.params = [
            self.W_i, self.U_i, self.b_i, self.W_c, self.U_c, self.b_c,
            self.W_f, self.U_f, self.b_f, self.W_o, self.U_o, self.b_o
        ]
コード例 #2
0
ファイル: SimAsImage.py プロジェクト: iofu728/Model_retrieval
    def __init__(self, rng, n_in, n_out, tensor_num=3, activation=T.tanh):
        self.tensor_num = tensor_num
        self.W = []
        for i in range(tensor_num):
            self.W.append(shared_common(ortho_weight(100)))
        self.activation = activation
        self.hidden_layer = HiddenLayer2(rng, tensor_num * 5 * n_in, n_out)

        self.params = self.W + self.hidden_layer.params
コード例 #3
0
ファイル: SimAsImage.py プロジェクト: iofu728/Model_retrieval
    def __init__(self,
                 rng,
                 n_in,
                 n_out,
                 W=None,
                 b=None,
                 activation=T.tanh,
                 hidden_size=100):
        self.W = shared_common(ortho_weight(hidden_size), 'W')
        self.activation = activation
        self.hidden_layer = HiddenLayer2(rng, 2 * 5 * n_in, n_out)

        self.params = [self.W] + self.hidden_layer.params
コード例 #4
0
ファイル: SimAsImage.py プロジェクト: iofu728/Model_retrieval
    def __init__(self,
                 rng,
                 n_in,
                 n_out,
                 W=None,
                 b=None,
                 activation=T.tanh,
                 hidden_size=100):
        self.W = shared_common(ortho_weight(hidden_size))
        self.activation = activation

        self.conv_layer = LeNetConvPoolLayer(rng,
                                             filter_shape=(8, 1, 3, 3),
                                             image_shape=(200, 1, 50, 50),
                                             poolsize=(3, 3),
                                             non_linear='relu')

        self.hidden_layer = HiddenLayer2(rng, 2048, n_out)
        self.params = self.conv_layer.params + self.hidden_layer.params
コード例 #5
0
ファイル: RNN.py プロジェクト: iofu728/Model_retrieval
    def __init__(self,
                 input_l,
                 input_r,
                 n_in,
                 n_hidden,
                 n_out,
                 activation=T.tanh,
                 output_type='real',
                 batch_size=200,
                 input_lm=None,
                 input_rm=None):
        if input_lm is None:
            input_lm = shared_ones((batch_size, 20))
        if input_rm is None:
            input_rm = shared_ones((batch_size, 20))
        self.activation = activation
        self.output_type = output_type

        self.W = shared_common(ortho_weight(n_hidden), 'W')
        self.W_in = shared_common(gloroat_uniform(n_in, n_hidden), 'W_in')

        self.h0 = shared_zeros((batch_size, n_hidden), 'h0')
        self.bh = shared_zeros((batch_size, n_hidden), 'bh')

        self.params = [self.W, self.W_in, self.bh]

        def step(x_t, mask, h_tm1):
            h_tm1 = mask * h_tm1
            h_t = T.tanh(
                T.dot(x_t, self.W_in) + T.dot(h_tm1, self.W) + self.bh)
            return h_t

        self.h_l, _ = scan_dimshuffle(step, input_l, input_lm,
                                      shared_zeros((batch_size, n_hidden)))
        self.h_r, _ = scan_dimshuffle(step, input_r, input_rm,
                                      shared_zeros((batch_size, n_hidden)))
        self.h_l = self.h_l.dimshuffle(1, 0, 2)
        self.h_r = self.h_r.dimshuffle(1, 0, 2)