コード例 #1
0
    def __init__(self, cfg_node, model_cfg_fname, training):
        self.data_cfg = parse_data_cfg(cfg_node.DATA_CFG_FNAME)
        if training:
            path = self.data_cfg["train"]
        else:
            path = self.data_cfg["valid"]

        with open(path, "r") as file:
            self.img_files = file.readlines()
        if self.data_cfg['names'].find('voc') != -1:
            self.label_files = [
                path.replace("JPEGImages", "labels").replace(".png", ".txt").replace(".jpg", ".txt")
                for path in self.img_files
            ]
        elif self.data_cfg['names'].find('coco') != -1:
            self.label_files = [
                path.replace("images", "labels").replace(".png", ".txt").replace(".jpg", ".txt")
                for path in self.img_files
            ]
        else:
            raise NotImplementedError

        self.batch_size = cfg_node.BATCH_SIZE
        self.n_cpu = cfg_node.N_CPU
        self.batch_count = 0
        self.img_size = cfg_node.IMG_SIZE
        self.training = training
        if training:
            self.multiscale = cfg_node.MULTISCALE
            if self.multiscale:
                self.multiscale_interval = 10
                self.min_scale = 10 * 32
                self.max_scale = 19 * 32
            self.jitter, self.saturation, self.exposure, self.hue = self.parse_augmentation_cfg(model_cfg_fname)
コード例 #2
0
    def detect(self, img_path):
        self.network.eval()

        img = Image.open(img_path).convert('RGB')
        img = img.resize((self.cfg.IMG_SIZE, self.cfg.IMG_SIZE))
        img = transforms.ToTensor()(img)
        img = torch.stack([img])

        with torch.no_grad():
            output = self.network(img)
        predictions = non_max_suppression(output, self.cfg.CONF_THRESH,
                                          self.cfg.NMS_THRESH)
        draw_detect_box(img_path, predictions[0],
                        parse_data_cfg(self.cfg.DATA_CFG_FNAME)['names'])
コード例 #3
0
def main():
    """Create a TensorRT engine for ONNX-based YOLOv3-608 and run inference."""

    # Try to load a previously generated YOLOv3-608 network graph in ONNX format:
    onnx_file_path = './yolov3.onnx'
    engine_file_path = "yolov3.trt"
    data_path = "./data/unrel.data"

    data = parse_data_cfg(data_path)
    nc = int(data['classes'])  # number of classes
    path = data['valid']  # path to test images
    names = load_classes(data['names'])  # class names

    iouv = torch.linspace(0.5, 0.95, 1,
                          dtype=torch.float32)  # iou vector for [email protected]:0.95
    niou = 1

    conf_thres = 0.001
    iou_thres = 0.6
    verbose = True

    # Genearte custom dataloader
    img_size = 448  # copy form pytorch src
    batch_size = 16

    dataset = LoadImagesAndLabels(path, img_size, batch_size, rect=True)
    batch_size = min(batch_size, len(dataset))
    dataloader = data_loader(dataset, batch_size, img_size)

    # Output shapes expected by the post-processor
    output_shapes = [(16, 126, 14, 14), (16, 126, 28, 28), (16, 126, 56, 56)]

    # Do inference with TensorRT
    trt_outputs = []
    with get_engine(onnx_file_path, engine_file_path
                    ) as engine, engine.create_execution_context() as context:
        inputs, outputs, bindings, stream = common.allocate_buffers(engine)
        s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
                                     '[email protected]', 'F1')
        p, r, f1, mp, mr, map, mf1, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
        pbar = tqdm.tqdm(dataloader, desc=s)
        stats, ap, ap_class = [], [], []
        seen = 0

        for batch_i, (imgs, targets, paths, shapes) in enumerate(pbar):

            imgs = imgs.astype(np.float32) / 255.0
            nb, _, height, width = imgs.shape  # batch size, channels, height, width
            whwh = np.array([width, height, width, height])

            inputs[0].host = imgs

            postprocessor_args = {
                "yolo_masks": [
                    (6, 7, 8), (3, 4, 5), (0, 1, 2)
                ],  # A list of 3 three-dimensional tuples for the YOLO masks
                "yolo_anchors": [
                    (10, 13),
                    (16, 30),
                    (33, 23),
                    (30, 61),
                    (
                        62, 45
                    ),  # A list of 9 two-dimensional tuples for the YOLO anchors
                    (59, 119),
                    (116, 90),
                    (156, 198),
                    (373, 326)
                ],
                "num_classes":
                37,
                "stride": [32, 16, 8]
            }

            postprocessor = PostprocessYOLO(**postprocessor_args)

            # Do layers before yolo
            t = time.time()
            trt_outputs = common.do_inference_v2(context,
                                                 bindings=bindings,
                                                 inputs=inputs,
                                                 outputs=outputs,
                                                 stream=stream)

            trt_outputs = [
                output.reshape(shape)
                for output, shape in zip(trt_outputs, output_shapes)
            ]

            trt_outputs = [
                np.ascontiguousarray(
                    otpt[:, :, :int(imgs.shape[2] * (2**i) /
                                    32), :int(imgs.shape[3] * (2**i) / 32)],
                    dtype=np.float32) for i, otpt in enumerate(trt_outputs)
            ]

            output_list = postprocessor.process(trt_outputs)

            t0 += time.time() - t

            inf_out = torch.cat(output_list, 1)
            t = time.time()
            output = non_max_suppression(inf_out,
                                         conf_thres=conf_thres,
                                         iou_thres=iou_thres)  # nms
            t1 += time.time() - t

            # Statistics per image
            for si, pred in enumerate(output):
                labels = targets[targets[:, 0] == si, 1:]
                nl = len(labels)
                tcls = labels[:, 0].tolist() if nl else []  # target class
                seen += 1

                if pred is None:
                    if nl:
                        stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                      torch.Tensor(), torch.Tensor(), tcls))
                    continue

                # Assign all predictions as incorrect
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
                if nl:
                    detected = []  # target indices
                    tcls_tensor = labels[:, 0]

                    # target boxes
                    tbox = xywh2xyxy(labels[:, 1:5]) * whwh
                    tbox = tbox.type(torch.float32)

                    # Per target class
                    for cls in torch.unique(tcls_tensor):
                        ti = (cls == tcls_tensor).nonzero().view(
                            -1)  # prediction indices
                        pi = (cls == pred[:, 5]).nonzero().view(
                            -1)  # target indices

                        # Search for detections
                        if pi.shape[0]:
                            # Prediction to target ious
                            ious, i = box_iou(pred[pi, :4], tbox[ti]).max(
                                1)  # best ious, indices

                            # Append detections
                            for j in (ious > iouv[0]).nonzero():
                                d = ti[i[j]]  # detected target
                                if d not in detected:
                                    detected.append(d)
                                    correct[pi[j]] = ious[
                                        j] > iouv  # iou_thres is 1xn
                                    if len(
                                            detected
                                    ) == nl:  # all targets already located in image
                                        break

                # Append statistics (correct, conf, pcls, tcls)
                stats.append(
                    (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

            # Plot images
            if batch_i < 1:
                f = 'test_batch%g_gt.jpg' % batch_i  # filename
                plot_images(imgs, targets, paths=paths, names=names,
                            fname=f)  # ground truth
                f = 'test_batch%g_pred.jpg' % batch_i
                plot_images(imgs,
                            output_to_target(output, width, height),
                            paths=paths,
                            names=names,
                            fname=f)  # predictions

        # Compute statistics
        stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
        if len(stats):
            p, r, ap, f1, ap_class = ap_per_class(*stats)
            if niou > 1:
                p, r, ap, f1 = p[:, 0], r[:, 0], ap.mean(
                    1), ap[:, 0]  # [P, R, [email protected]:0.95, [email protected]]
            mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
            nt = np.bincount(stats[3].astype(np.int64),
                             minlength=nc)  # number of targets per class
        else:
            nt = torch.zeros(1)

        # Print results
        pf = '%20s' + '%10.3g' * 6  # print format
        print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))

        # Print results per class
        if verbose and nc > 1 and len(stats):
            for i, c in enumerate(ap_class):
                print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))

        # Print speeds
        if verbose:
            t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (
                img_size, img_size, batch_size)  # tuple
            print(
                'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
                % t)