コード例 #1
0
        epoch + 1, lr, train_res['loss'], train_res['accuracy'],
        test_res['loss'], test_res['accuracy'], time_ep, train_res['nll'],
        train_res['kl'], test_res['accuracy'], test_res['loss']
    ]
    table = tabulate.tabulate([values],
                              columns,
                              tablefmt='simple',
                              floatfmt='8.4f')
    if epoch % 40 == 0:
        table = table.split('\n')
        table = '\n'.join([table[1]] + table)
    else:
        table = table.split('\n')[2]
    print(table)

print('Final test res:', test_res)
test_preds, test_targets = utils.predictions(loaders['test'], model)
pth = os.path.join(args.dir, args.fname + '.pt')
print('Save to:', pth)
torch.save(model.state_dict(), pth)
print('Global time: ', time.time() - global_time)

model.eval()
print('\nEnsemble results:')
for ns in [1, 10, 100]:
    acc, llh, log_prob, targets, preds = utils.ens_pred(
        model, loaders['test'], ns)
    print('ns %s: acc %.4f, llh %.4f' % (ns, acc, llh))

print('\n\n', args.dataset, args.model, args.beta, acc, llh, '\n')
コード例 #2
0
for epoch in range(start_epoch, args.epochs):
    time_ep = time.time()

    lr = schedule(epoch)
    utils.adjust_learning_rate(optimizer, lr)
    model.train()
    train_res = utils.train_epoch(loaders['train'], model, criterion, optimizer)
    test_res = {'loss': None, 'accuracy': None}
    valid_res = {'loss': None, 'accuracy': None}
    tta_res = {'loss': None, 'accuracy': None}
    if (epoch + 1) % args.eval_freq == 0:
        with torch.no_grad():
            model.eval()
            # Testing
            log_prob, targets = utils.predictions(loaders['test'], model)
            metrics_ts = metrics_kfold(log_prob, targets, n_splits=2, n_runs=5, temp_scale=True)
            test_res['loss'] = -metrics_ts['ll']
            test_res['accuracy'] = metrics_ts['acc']
            # Validation
            if args.valid_size > 0:
                log_prob, targets = utils.predictions(loaders['valid'], model)
                metrics_ts = metrics_kfold(log_prob, targets, n_splits=2, n_runs=5, temp_scale=True)
                valid_res['loss'] = -metrics_ts['ll']
                valid_res['accuracy'] = metrics_ts['acc']
            # Test-time augmentation
            log_probs = []
            for i in range(args.num_tta):
                log_prob, targets = utils.predictions(loaders['tta'], model)
                log_probs.append(log_prob)
            log_prob = logsumexp(np.dstack(log_probs), axis=2) - np.log(args.num_tta)