コード例 #1
0
    def __init__(self):
        args = ParserArgs().args
        cuda_visible(args.gpu)

        cudnn.benchmark = True

        if args.data_modality == 'fundus':
            # IDRiD dataset for segmentation
            # image, mask, image_name_item

            # iSee dataset for classification
            # image, image_name
            self.train_loader, self.normal_test_loader, \
            self.amd_fundus_loader, self.myopia_fundus_loader = \
                ClassificationFundusDataloader(data_root=args.isee_fundus_root,
                                               batch=args.batch,
                                               scale=args.scale).data_load()

        else:
            # Challenge OCT dataset for classification
            # image, [case_name, image_name]
            self.train_loader, self.normal_test_loader, self.oct_abnormal_loader = OCT_ClsDataloader(
                data_root=args.challenge_oct,
                batch=args.batch,
                scale=args.scale).data_load()

        print_args(args)
        self.args = args

        for ablation_mode in range(6):
            args.resume = 'v22_ablation_{}@fundus@woVGG/latest_ckpt.pth.tar'.format(
                ablation_mode)
            self.model = PNetModel(args)
            self.test_cls(ablation_mode)
コード例 #2
0
    def __init__(self):
        args = ParserArgs().get_args()
        cuda_visible(args.gpu)

        cudnn.benchmark = True

        self.vis = Visualizer(env='{}'.format(args.version),
                              port=args.port,
                              server=args.vis_server)

        if args.data_modality == 'fundus':
            self.source_loader = AnoDRIVE_Loader(
                data_root=args.fundus_data_root,
                batch=args.batch,
                scale=args.scale,
                pre=True  # pre-process
            ).data_load()
            # self.target_loader, _ = AnoIDRID_Loader(data_root=args.fundus_data_root,
            #                                      batch=args.batch,
            #                                      scale=args.scale,
            #                                     pre=True).data_load()
            self.target_loader = NewClsFundusDataloader(
                data_root=args.isee_fundus_root,
                batch=args.batch,
                scale=args.scale).load_for_seg()

        else:
            self.source_loader = ChengOCTloader(
                data_root=args.cheng_oct,
                batch=args.batch,
                scale=args.scale,
                flip=args.flip,
                rotate=args.rotate,
                enhance_p=args.enhance_p).data_load()
            self.target_loader, _ = ChallengeOCTloader(
                data_root=args.challenge_oct,
                batch=args.batch,
                scale=args.scale).data_load()

        print_args(args)
        self.args = args
        self.new_lr = self.args.lr
        self.model = SegTransferModel(args)

        if args.predict:
            self.validate_loader(self.target_loader)
        else:
            self.train_validate()
コード例 #3
0
def main():
    args = parse_args()
    print_args(args)
    if args.json is None or args.json == '':
        print('\nFor usage, please use the -h switch.\n\n')
        sys.exit(0)

    with open(args.json) as json_file:
        configs = json.load(json_file)

    label_map = load_label_list()
    if type(label_map) is not dict:
        raise TypeError('label_list is not correct')
    else:
        # print(label_map)
        pass

    baidu = Baidu(configs, label_map, 'camera')
    baidu.read_labels(configs)
    baidu.predict_camera(configs)
コード例 #4
0
    def __init__(self):
        args = ParserArgs().get_args()
        cuda_visible(args.gpu)

        cudnn.benchmark = True

        self.vis = Visualizer(env='{}'.format(args.version),
                              port=args.port,
                              server=args.vis_server)

        if args.data_modality == 'fundus':
            # IDRiD dataset for segmentation
            # image, mask, image_name_item

            # iSee dataset for classification
            # image, image_name
            self.train_loader, self.normal_test_loader, \
            self.amd_fundus_loader, self.myopia_fundus_loader, \
            self.glaucoma_fundus_loader, self.dr_fundus_loader = \
                NewClsFundusDataloader(data_root=self.args.isee_fundus_root,
                                       batch=self.args.batch,
                                       scale=self.args.scale).data_load()

        else:
            # Challenge OCT dataset for classification
            # image, [case_name, image_name]
            self.train_loader, self.normal_test_loader, self.oct_abnormal_loader = OCT_ClsDataloader(
                data_root=args.challenge_oct,
                batch=args.batch,
                scale=args.scale).data_load()

        print_args(args)
        self.args = args
        self.new_lr = self.args.lr
        self.model = PNetModel(args)

        if args.predict:
            self.test_acc()
        else:
            self.train_val()
コード例 #5
0
def main():
    args = parser.parse_args()

    print_args(args)

    if args.seed is not None:
        print('seed number given => {:d}'.format(args.seed))
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)

    args.dataset = os.path.join('./datasets', args.dataset)

    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

    if args.experiment_id is not None:
        model_id = args.experiment_id
    else:
        model_id = time.strftime('%Y-%m-%d-%H%M%S',
                                 time.localtime(time.time()))
    args.save_path = os.path.join('checkpoints', model_id)
    os.makedirs(args.save_path, exist_ok=True)
    print('experiment id => {} \ncheckpoint path => {}'.format(
        model_id, args.save_path))

    writer = get_summarywriter(model_id) if args.tensorboard else None

    inf_train_loader = create_dataloader(args, phase='train', inf=True)
    val_loader = create_dataloader(args, phase='test')

    model = deepdeblur.DeepDeblur_scale3()
    model.to(device)
    netD = discriminator.Discriminator()
    netD.to(device)

    train(inf_train_loader, val_loader, model, netD, device, writer, args)

    writer.close()
コード例 #6
0

def parse_args():
    parser = argparse.ArgumentParser(
        description='API implementation for Paddle-Mobile')
    parser.add_argument('-j',
                        '--json',
                        help='configuration file for the prediction',
                        default="config/detection/vgg-ssd/screw.json")
    return parser.parse_args()


if __name__ == '__main__':
    label_map = dict()
    args = parse_args()
    print_args(args)
    if args.json is None or args.json == '':
        print('\nFor usage, please use the -h switch.\n\n')
        sys.exit(0)

    with open(args.json) as json_file:
        configs = json.load(json_file)
    label_map = load_label_list()
    if type(label_map) is not dict:
        raise TypeError('label_list is not correct')
    else:
        # print(label_map)
        pass
    baidu = Baidu(configs, label_map, 'video')
    baidu.read_labels(configs)
    baidu.predict_video(configs)
コード例 #7
0
def main():
    parser = argparse.ArgumentParser(description='AN')
    parser.add_argument('--name', default='bn_smaller_batch', type=str)

    ## data setting
    parser.add_argument('--root',
                        default='/scratch/local/ssd/datasets',
                        type=str)
    parser.add_argument('--train_dataset', default='synthtext', type=str)
    parser.add_argument('--test_dataset', default='ic03', type=str)
    parser.add_argument('--vis_gt', default=False, type=bool)
    parser.add_argument('--vis_gt_path',
                        default='/users/czhang/data/vis',
                        type=str)
    parser.add_argument('--load_width', default=256, type=int)
    parser.add_argument('--load_height', default=32, type=int)
    parser.add_argument("--gpus", dest="gpu", default="0", type=str)
    parser.add_argument('--min_gt_len', default=3, type=int)
    parser.add_argument("--aug", dest="aug", action='store_true')
    parser.add_argument("--RA", dest="repeated_aug", default='1', type=int)

    ## model setting
    parser.add_argument('--alphabet',
                        default=' 0123456789abcdefghijklmnopqrstuvwxyz',
                        type=str)
    #parser.add_argument('--ignore_case', default=True, type=bool)
    parser.add_argument('--max_len', default=65, type=int)
    parser.add_argument("--cv", dest="context_vector", action='store_true')

    ## optim setting
    parser.add_argument('--batch_size', default=128, type=int)
    parser.add_argument('--resume_i', default=0, type=int)
    parser.add_argument('--resume_j', default=0, type=int)

    parser.add_argument('--cl_weight',
                        default=1,
                        type=int,
                        help='center loss weight')
    parser.add_argument('--num_workers', default=64, type=int)
    parser.add_argument('--lr', default=1.0, type=float)
    parser.add_argument('--beta1',
                        type=float,
                        default=0.5,
                        help='beta1 for adam. default=0.5')
    parser.add_argument('--momentum', default=0.9, type=float)
    parser.add_argument('--weight_decay', default=1e-5, type=float)
    parser.add_argument('--gamma', default=0.1, type=float)
    parser.add_argument('--optim',
                        default='adadelta',
                        type=str,
                        help='sgd, adam, adadelta')
    # parser.add_argument('--clip_grad', default=False, type=bool)
    parser.add_argument('--max_norm',
                        default=400,
                        type=int,
                        help='Norm cutoff to prevent explosion of gradients')
    parser.add_argument('--max_epoches', default=1000, type=int)
    # parser.add_argument('--adjust_lr', default='800, 1600', type=str)

    ## output setting
    parser.add_argument('--log_iter', default=10, type=int)
    parser.add_argument('--eval_iter', default=2500, type=int)
    parser.add_argument('--save_iter', default=2500, type=int)
    parser.add_argument('--save_folder',
                        default='/users/czhang/data/FAN/',
                        type=str)
    parser.add_argument('--tbx_folder',
                        default='/users/czhang/data/FAN/tbx',
                        type=str)

    parser.add_argument('--eval_vis_num', default=15, type=int)
    parser.add_argument('--max_iter', default=2000000, type=int)

    args = parser.parse_args()
    args.save_folder = osp.join(args.save_folder, args.name)
    if osp.exists(args.save_folder) == False:
        os.mkdir(args.save_folder)

    tbx_dir = osp.join(args.tbx_folder, args.name)
    if osp.exists(args.tbx_folder) == False:
        os.mkdir(args.tbx_folder)

    if osp.exists(tbx_dir) == False:
        os.mkdir(tbx_dir)
    writer = SummaryWriter(tbx_dir)
    log_file_path = args.save_folder + '/' + time.strftime(
        '%Y%m%d_%H%M%S') + '.log'
    ##
    args.nClasses = len(args.alphabet)
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
    device = torch.device("cuda:0")

    setup_logger(log_file_path)
    print_args(args)
    torch.set_default_tensor_type('torch.FloatTensor')

    ## setup converter
    converter = strLabelConverter(args.alphabet)

    ## setup dataset
    logging.info('model will be trained on %s' % (args.train_dataset))
    trainset = SynthLoader(args, args.train_dataset, converter, aug=args.aug)
    logging.info('%d training samples' % (trainset.__len__()))
    train_loader = data.DataLoader(trainset,
                                   args.batch_size,
                                   num_workers=args.num_workers,
                                   shuffle=True,
                                   collate_fn=text_collate,
                                   pin_memory=True)

    logging.info('model will be evaluated on %s' % (args.test_dataset))
    testset = SceneLoader(args, args.test_dataset, False)
    logging.info('%d test samples' % (testset.__len__()))
    test_loader = data.DataLoader(testset,
                                  1,
                                  num_workers=args.num_workers,
                                  shuffle=False,
                                  pin_memory=True)

    ## setup model
    net = AN(args)
    net = torch.nn.DataParallel(net).to(device)
    centers = None

    if args.resume_i != 0 or args.resume_j != 0:
        resume_file = osp.join(
            args.save_folder,
            str(args.resume_i) + '_' + str(args.resume_j) + '.pth')
        logging.info('Resuming training, loading {}...'.format(resume_file))
        checkpoint = torch.load(resume_file)
        #net.load_state_dict(checkpoint)
        net.load_state_dict(checkpoint['model_state_dict'])
        centers = checkpoint['class_centers']

    ## setup criterion
    criterion = nn.CrossEntropyLoss()
    criterion2 = CenterLoss(device, centers)

    ## setup optimizer
    if args.cl_weight != 0:
        parameters = list(net.parameters()) + list(criterion2.parameters())
    else:
        parameters = net.parameters()

    if args.optim == 'sgd':
        optimizer = optim.SGD(parameters,
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=args.weight_decay)
        logging.info('model will be optimed by sgd')
    elif args.optim == 'adam':
        optimizer = optim.Adam(parameters,
                               lr=args.lr,
                               weight_decay=args.weight_decay)
        logging.info('model will be optimed by adam')
    elif args.optim == 'adadelta':
        optimizer = optim.Adadelta(parameters,
                                   lr=args.lr,
                                   weight_decay=args.weight_decay)
        logging.info('model will be optimed by adadelta')
    else:
        optimizer = optim.Adam(parameters,
                               lr=args.lr,
                               weight_decay=args.weight_decay)
        logging.info('model will be optimed by adam')

    ## train model
    cudnn.benchmark = True
    net.train()
    iter_counter = args.resume_j + 1
    acc_max = 0
    running_loss, running_cenloss, running_croloss = 0., 0., 0.

    for i in range(args.max_epoches):
        i = args.resume_i + i
        t0 = time.time()
        for j, batch_samples in enumerate(train_loader):
            j = args.resume_j + j + 1
            imgs, labels, paths = batch_samples
            imgs = Variable(imgs.float()).to(device)
            labels = Variable(labels.long()).to(device)  #[batch*len]
            if args.context_vector or args.cl_weight != 0:
                preds, gts = net(imgs, labels)  #[batch,len,classes]
                masks = mask(args, labels.view(args.batch_size, args.max_len),
                             device)
                center_loss = criterion2(gts, labels, masks)
                running_cenloss += center_loss.item()

            else:
                preds = net(imgs, labels)
                center_loss = 0

            ce_loss = criterion(preds.view(-1, args.nClasses), labels.view(-1))
            loss = ce_loss + 0.01 * args.cl_weight * center_loss

            optimizer.zero_grad()
            loss.backward()
            if args.cl_weight != 0:
                for param in criterion2.parameters():
                    # update class centers
                    # remove the effect of lambda on updating centers
                    # lr of center loss set to 0.5 of the model lr
                    param.grad.data *= (0.5 / (0.01 * args.cl_weight))

            torch.nn.utils.clip_grad_norm_(net.parameters(), args.max_norm)
            optimizer.step()
            running_loss += loss.item()
            running_croloss += ce_loss.item()

            if iter_counter % args.log_iter == 0:
                t1 = time.time()
                acc, pred_samples, label_samples = lex_free_acc(
                    preds, labels, converter)
                print(
                    'epoch:%3d  iter:%6d  loss:%4.6f  acc:%4.6f  %4.6fs/batch'
                    % (i, j, running_loss / args.log_iter, acc,
                       (t1 - t0) / args.log_iter))
                writer.add_scalar('train/train_word_accuracy', acc, j)
                writer.add_scalar('train/train_loss',
                                  running_loss / args.log_iter, j)
                if args.cl_weight != 0:
                    writer.add_scalar('train/train_ce_loss',
                                      running_croloss / args.log_iter, j)
                    writer.add_scalar('train/train_center_loss',
                                      running_cenloss / args.log_iter, j)

                if iter_counter % (100 * args.log_iter) == 0:
                    visual_img = imgs[0, :, :, :].unsqueeze(0)
                    writer.add_image('train/train_im', visual_img, j)
                    visual_txt = 'gt: ' + str(
                        label_samples[0]) + ' ----- pred: ' + str(
                            label_samples[0])
                    writer.add_text('train/train_txt', visual_txt, j)
                t0 = time.time()
                running_loss, running_cenloss, running_croloss = 0., 0., 0.

            if iter_counter % args.save_iter == 0:
                print('Saving state, epoch: %d iter:%d' % (i, j))
                torch.save(
                    {
                        'model_state_dict': net.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'class_centers': criterion2.centers
                    },
                    args.save_folder + '/' + repr(i) + '_' + repr(j) + '.pth')

            if iter_counter % args.eval_iter == 0:
                ## eval model
                net.eval()
                n_correct = 0
                skip_counter = 0
                for index, sample in enumerate(test_loader):
                    imgs, gt_strs, lexicon50, lexicon1k, lexiconfull, img_paths = sample

                    gt_str = gt_strs[0]
                    if len(gt_str) < args.min_gt_len or not gt_str.isalnum():
                        skip_counter += 1
                        continue
                    imgs = Variable(imgs).cuda()
                    gt_ind, _ = converter.encode(gt_str)
                    gt_ind = torch.IntTensor(
                        (gt_ind + [0] * args.max_len)[:args.max_len])
                    if args.context_vector or args.cl_weight != 0:
                        preds, _ = net(imgs, gt_ind)
                    else:
                        preds = net(imgs, gt_ind)

                    correct, pred_str, _ = lex_free_acc(
                        preds, gt_ind, converter)
                    n_correct += correct

                acc = n_correct * 1.0 / (testset.__len__() - skip_counter)
                if acc > acc_max:
                    acc_max = acc
                logging.info('accuracy=%f   acc_max=%f' % (acc, acc_max))
                writer.add_scalar('val/val_word_accuracy', acc, j)

                net.train()

            if iter_counter > args.max_iter:
                break
            iter_counter += 1

    torch.save(net.state_dict(), args.save_folder + '/final_0.pth')
    logging.info('The training stage on %s is over!!!' % (args.train_dataset))