コード例 #1
0
    def __init__(self, hyperparameters, opts):
        super(MUNIT_Trainer, self).__init__()
        lr = hyperparameters['lr']
        self.opts = opts

        # Initiate the networks
        self.gen_a = AdaINGen(hyperparameters['input_dim_a'], hyperparameters['gen'])  # auto-encoder for domain a
        self.gen_b = AdaINGen(hyperparameters['input_dim_b'], hyperparameters['gen'])  # auto-encoder for domain b
        self.dis_a = MsImageDis(hyperparameters['input_dim_a'], hyperparameters['dis'])  # discriminator for domain a
        self.dis_b = MsImageDis(hyperparameters['input_dim_b'], hyperparameters['dis'])  # discriminator for domain b
        self.seg = segmentor(num_classes=2, channels=hyperparameters['input_dim_b'], hyperpars=hyperparameters['seg'])

        self.instancenorm = nn.InstanceNorm2d(512, affine=False)
        self.style_dim = hyperparameters['gen']['style_dim']

        # fix the noise used in sampling
        display_size = int(hyperparameters['display_size'])
        self.s_a = torch.randn(display_size, self.style_dim, 1, 1).cuda()
        self.s_b = torch.randn(display_size, self.style_dim, 1, 1).cuda()

        # Setup the optimizers
        beta1 = hyperparameters['beta1']
        beta2 = hyperparameters['beta2']
        dis_params = list(self.dis_a.parameters()) + list(self.dis_b.parameters())
        gen_params = list(self.gen_a.parameters()) + list(self.gen_b.parameters())
        self.dis_opt = torch.optim.Adam([p for p in dis_params if p.requires_grad],
                                        lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
        self.gen_opt = torch.optim.Adam([p for p in gen_params if p.requires_grad],
                                        lr=lr, betas=(beta1, beta2), weight_decay=hyperparameters['weight_decay'])
        self.seg_opt = torch.optim.SGD(self.seg.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4)

        self.dis_scheduler = get_scheduler(self.dis_opt, hyperparameters['lr_policy'], hyperparameters=hyperparameters)
        self.gen_scheduler = get_scheduler(self.gen_opt, hyperparameters['lr_policy'], hyperparameters=hyperparameters)
        self.seg_scheduler = get_scheduler(self.seg_opt, 'constant', hyperparameters=None)

        # Network weight initialization
        self.apply(weights_init(hyperparameters['init']))
        self.dis_a.apply(weights_init('gaussian'))
        self.dis_b.apply(weights_init('gaussian'))

        self.criterion_seg = DiceLoss(ignore_index=hyperparameters['seg']['ignore_index'])
コード例 #2
0
ファイル: main-checkpoint.py プロジェクト: tl32rodan/SSDA_MME
for key, value in dict(G.named_parameters()).items():
    if value.requires_grad:
        if 'classifier' not in key:
            params += [{'params': [value], 'lr': args.multi,
                        'weight_decay': 0.0005}]
        else:
            params += [{'params': [value], 'lr': args.multi * 10,
                        'weight_decay': 0.0005}]

if "resnet" in args.net:
    F1 = Predictor_deep(num_class=len(class_list),
                        inc=inc)
else:
    F1 = Predictor(num_class=len(class_list), inc=inc,
                   temp=args.T)
weights_init(F1)
lr = args.lr
G.cuda()
F1.cuda()

im_data_s = torch.FloatTensor(1)
im_data_t = torch.FloatTensor(1)
im_data_tu = torch.FloatTensor(1)
gt_labels_s = torch.LongTensor(1)
gt_labels_t = torch.LongTensor(1)
sample_labels_t = torch.LongTensor(1)
sample_labels_s = torch.LongTensor(1)

im_data_s = im_data_s.cuda()
im_data_t = im_data_t.cuda()
im_data_tu = im_data_tu.cuda()
コード例 #3
0
    #   训练之前一定要修改NUM_CLASSES
    #   修改成所需要区分的类的个数。
    #----------------------------------------------------#
    NUM_CLASSES = 20
    #-------------------------------------------------------------------------------------#
    #   input_shape是输入图片的大小,默认为800,800,3,随着输入图片的增大,占用显存会增大
    #   视频上为600,600,3,实际测试中发现800,800,3效果更好
    #-------------------------------------------------------------------------------------#
    input_shape = [800,800,3]
    #----------------------------------------------------#
    #   使用到的主干特征提取网络
    #   vgg或者resnet50
    #----------------------------------------------------#
    backbone = "resnet50"
    model = FasterRCNN(NUM_CLASSES,backbone=backbone)
    weights_init(model)

    # #------------------------------------------------------#
    #   权值文件请看README,百度网盘下载
    #------------------------------------------------------#
    model_path = 'model_data/voc_weights_resnet.pth'
    print('Loading weights into state dict...')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model_dict = model.state_dict()
    pretrained_dict = torch.load(model_path, map_location=device)
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) ==  np.shape(v)}
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)
    print('Finished!')

    net = model.train()
コード例 #4
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='SSDA Classification')
    parser.add_argument('--steps',
                        type=int,
                        default=50000,
                        metavar='N',
                        help='maximum number of iterations '
                        'to train (default: 50000)')
    parser.add_argument(
        '--method',
        type=str,
        default='MME',
        choices=['S+T', 'ENT', 'MME'],
        help='MME is proposed method, ENT is entropy minimization,'
        ' S+T is training only on labeled examples')
    parser.add_argument('--lr',
                        type=float,
                        default=0.01,
                        metavar='LR',
                        help='learning rate (default: 0.001)')
    parser.add_argument('--multi',
                        type=float,
                        default=0.1,
                        metavar='MLT',
                        help='learning rate multiplication')
    parser.add_argument('--T',
                        type=float,
                        default=0.05,
                        metavar='T',
                        help='temperature (default: 0.05)')
    parser.add_argument('--lamda',
                        type=float,
                        default=0.1,
                        metavar='LAM',
                        help='value of lamda')
    parser.add_argument('--save_check',
                        action='store_true',
                        default=False,
                        help='save checkpoint or not')
    parser.add_argument('--checkpath',
                        type=str,
                        default='./save_model_ssda',
                        help='dir to save checkpoint')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval',
                        type=int,
                        default=100,
                        metavar='N',
                        help='how many batches to wait before logging '
                        'training status')
    parser.add_argument('--save_interval',
                        type=int,
                        default=500,
                        metavar='N',
                        help='how many batches to wait before saving a model')
    parser.add_argument('--net',
                        type=str,
                        default='al  exnet',
                        help='which network to use')
    parser.add_argument('--source',
                        type=str,
                        default='real',
                        help='source domain')
    parser.add_argument('--target',
                        type=str,
                        default='sketch',
                        help='target domain')
    parser.add_argument('--dataset',
                        type=str,
                        default='multi',
                        help='the name of dataset')
    parser.add_argument('--num',
                        type=int,
                        default=3,
                        help='number of labeled examples in the target')
    parser.add_argument('--patience',
                        type=int,
                        default=5,
                        metavar='S',
                        help='early stopping to wait for improvment '
                        'before terminating. (default: 5 (5000 iterations))')
    parser.add_argument('--early',
                        action='store_false',
                        default=True,
                        help='early stopping on validation or not')
    parser.add_argument('--loss',
                        type=str,
                        default='CE',
                        choices=['CE', 'FL', 'CBFL'],
                        help='classifier loss function')
    parser.add_argument('--beta',
                        type=float,
                        default=0.99,
                        required=False,
                        help='beta value in CBFL loss')
    parser.add_argument('--gamma',
                        type=float,
                        default=0.5,
                        required=False,
                        help='gamma value in CBFL or FL')
    parser.add_argument('--reg',
                        type=float,
                        default=0.1,
                        required=False,
                        help='weight of semantic regularizer')
    parser.add_argument('--attribute',
                        type=str,
                        default=None,
                        help='semantic attribute feature vector to be used')
    parser.add_argument(
        '--dim',
        type=int,
        default=50,
        help=
        'dimensionality of the feature vector - make sure this in sync with the dim of the semantic attribute vector'
    )
    parser.add_argument('--mode',
                        type=str,
                        default='train',
                        choices=['train', 'infer'],
                        help='mode of script train or infer')
    # this argument is valid only if the mode is infer
    parser.add_argument('--model_path',
                        type=str,
                        help='path to the checkpoint of the model')
    parser.add_argument(
        '--uda',
        type=int,
        default=0,
        help='unsupervised domain adaptation or not - 0 for ssda and 1 for uda'
    )

    args = parser.parse_args()
    print('Dataset %s Source %s Target %s Labeled num perclass %s Network %s' %
          (args.dataset, args.source, args.target, args.num, args.net))
    source_loader, target_loader, target_loader_unl, target_loader_val, \
        target_loader_test, class_num_list, class_list = return_dataset(args) # class num list is returned for CBFL
    use_gpu = torch.cuda.is_available()
    record_dir = 'record/%s/%s' % (args.dataset, args.method)
    if not os.path.exists(record_dir):
        os.makedirs(record_dir)
    record_file = os.path.join(
        record_dir, '%s_net_%s_%s_to_%s_num_%s' %
        (args.method, args.net, args.source, args.target, args.num))
    if use_gpu:
        device = 'cuda'
    else:
        device = 'cpu'

    print("Device: %s  Loss: %s  Attributes: %s" %
          (device, args.loss, args.attribute))

    if use_gpu:
        torch.cuda.manual_seed(args.seed)
    else:
        torch.manual_seed(args.seed)

    if args.net == 'resnet34':
        G = resnet34()
        inc = 512
    elif args.net == "alexnet":
        G = AlexNetBase()
        inc = 4096
    elif args.net == "vgg":
        G = VGGBase()
        inc = 4096
    else:
        raise ValueError('Model cannot be recognized.')
    params = []
    for key, value in dict(G.named_parameters()).items():
        if value.requires_grad:
            if 'classifier' not in key:
                params += [{
                    'params': [value],
                    'lr': 0.1,
                    'weight_decay': 0.0005
                }]
            else:
                params += [{
                    'params': [value],
                    'lr': 1,
                    'weight_decay': 0.0005
                }]

    # Setting the predictor layer
    if args.attribute is not None:
        if args.net == 'resnet34':
            F1 = Predictor_deep_attributes(num_class=len(class_list),
                                           inc=inc,
                                           feat_dim=args.dim)
            print("Using: Predictor_deep_attributes")
        else:
            F1 = Predictor_attributes(num_class=len(class_list),
                                      inc=inc,
                                      feat_dim=args.dim)
            print("Using: Predictor_attributes")
    else:
        if args.net == 'resnet34':
            F1 = Predictor_deep(num_class=len(class_list), inc=inc)
            print("Using: Predictor_deep")
        else:
            F1 = Predictor(num_class=len(class_list), inc=inc, temp=args.T)
            print("Using: Predictor")

    # Initializing the weights of the prediction layer
    weights_init(F1)
    # Setting the prediction layer weights as the semantic attributes
    if args.attribute is not None:
        att = np.load('attributes/%s_%s.npy' % (args.dataset, args.attribute))
        #att = np.load('attributes/multi_%s.npy'%(args.attribute))
        if use_gpu:
            att = nn.Parameter(torch.cuda.FloatTensor(att))
        else:
            att = nn.Parameter(torch.FloatTensor(att, device="cpu"))
        if args.net == 'resnet34':
            F1.fc3.weight = att
        else:
            F1.fc2.weight = att
        print("attribute shape is: ", att.shape)

    lr = args.lr

    # If the mode is inference then load the pretrained network
    if args.mode == 'infer':
        # loading the model checkpoint
        main_dict = torch.load(args.model_path)
        G.load_state_dict(main_dict['G_state_dict'])
        F1.load_state_dict(main_dict['F_state_dict'])
        print("Loaded pretrained model weights")

    G.to(device)
    F1.to(device)

    if args.uda == 1:
        print("Using: Unsupervised domain adaptation")

    im_data_s = torch.FloatTensor(1)
    im_data_t = torch.FloatTensor(1)
    im_data_tu = torch.FloatTensor(1)
    gt_labels_t = torch.LongTensor(1)
    gt_labels_s = torch.LongTensor(1)
    sample_labels_t = torch.LongTensor(1)
    sample_labels_s = torch.LongTensor(1)

    im_data_s = im_data_s.to(device)
    im_data_t = im_data_t.to(device)
    im_data_tu = im_data_tu.to(device)
    gt_labels_s = gt_labels_s.to(device)
    gt_labels_t = gt_labels_t.to(device)
    sample_labels_t = sample_labels_t.to(device)
    sample_labels_s = sample_labels_s.to(device)

    im_data_s = Variable(im_data_s)
    im_data_t = Variable(im_data_t)
    im_data_tu = Variable(im_data_tu)
    gt_labels_s = Variable(gt_labels_s)
    gt_labels_t = Variable(gt_labels_t)
    sample_labels_t = Variable(sample_labels_t)
    sample_labels_s = Variable(sample_labels_s)

    if os.path.exists(args.checkpath) == False:
        os.mkdir(args.checkpath)

    time_stamp = datetime.now()
    print(time_stamp)

    def train(class_dist_threshold_list):
        G.train()
        F1.train()
        optimizer_g = optim.SGD(params,
                                momentum=0.9,
                                weight_decay=0.0005,
                                nesterov=True)
        optimizer_f = optim.SGD(list(F1.parameters()),
                                lr=1.0,
                                momentum=0.9,
                                weight_decay=0.0005,
                                nesterov=True)

        def zero_grad_all():
            optimizer_g.zero_grad()
            optimizer_f.zero_grad()

        param_lr_g = []
        for param_group in optimizer_g.param_groups:
            param_lr_g.append(param_group["lr"])
        param_lr_f = []
        for param_group in optimizer_f.param_groups:
            param_lr_f.append(param_group["lr"])

        # Setting the loss function to be used for the classification loss
        if args.loss == 'CE':
            criterion = nn.CrossEntropyLoss().to(device)
        if args.loss == 'FL':
            criterion = FocalLoss(alpha=1, gamma=args.gamma).to(device)
        if args.loss == 'CBFL':
            # Calculating the list having the number of examples per class which is going to be used in the CB focal loss
            beta = args.beta
            effective_num = 1.0 - np.power(beta, class_num_list)
            per_cls_weights = (1.0 - beta) / np.array(effective_num)
            per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(
                class_num_list)
            per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
            criterion = CBFocalLoss(weight=per_cls_weights,
                                    gamma=args.gamma).to(device)

        all_step = args.steps
        data_iter_s = iter(source_loader)
        data_iter_t = iter(target_loader)
        data_iter_t_unl = iter(target_loader_unl)
        len_train_source = len(source_loader)
        len_train_target = len(target_loader)
        len_train_target_semi = len(target_loader_unl)
        best_acc = 0
        counter = 0
        """
        x = torch.load("./freezed_models/alexnet_p2r.ckpt.best.pth.tar")
        G.load_state_dict(x['G_state_dict'])
        F1.load_state_dict(x['F1_state_dict'])
        optimizer_f.load_state_dict(x['optimizer_f'])
        optimizer_g.load_state_dict(x['optimizer_g'])
        """
        reg_weight = args.reg
        for step in range(all_step):
            optimizer_g = inv_lr_scheduler(param_lr_g,
                                           optimizer_g,
                                           step,
                                           init_lr=args.lr)
            optimizer_f = inv_lr_scheduler(param_lr_f,
                                           optimizer_f,
                                           step,
                                           init_lr=args.lr)
            lr = optimizer_f.param_groups[0]['lr']
            # condition for restarting the iteration for each of the data loaders
            if step % len_train_target == 0:
                data_iter_t = iter(target_loader)
            if step % len_train_target_semi == 0:
                data_iter_t_unl = iter(target_loader_unl)
            if step % len_train_source == 0:
                data_iter_s = iter(source_loader)
            data_t = next(data_iter_t)
            data_t_unl = next(data_iter_t_unl)
            data_s = next(data_iter_s)
            with torch.no_grad():
                im_data_s.resize_(data_s[0].size()).copy_(data_s[0])
                gt_labels_s.resize_(data_s[1].size()).copy_(data_s[1])
                im_data_t.resize_(data_t[0].size()).copy_(data_t[0])
                gt_labels_t.resize_(data_t[1].size()).copy_(data_t[1])
                im_data_tu.resize_(data_t_unl[0].size()).copy_(data_t_unl[0])

            zero_grad_all()
            if args.uda == 1:
                data = im_data_s
                target = gt_labels_s
            else:
                data = torch.cat((im_data_s, im_data_t), 0)
                target = torch.cat((gt_labels_s, gt_labels_t), 0)
            #print(data.shape)
            output = G(data)
            out1 = F1(output)
            if args.attribute is not None:
                if args.net == 'resnet34':
                    reg_loss = regularizer(F1.fc3.weight, att)
                    loss = criterion(out1, target) + reg_weight * reg_loss
                else:
                    reg_loss = regularizer(F1.fc2.weight, att)
                    loss = criterion(out1, target) + reg_weight * reg_loss
            else:
                reg_loss = torch.tensor(0)
                loss = criterion(out1, target)

            if args.attribute is not None:
                if step % args.save_interval == 0 and step != 0:
                    reg_weight = 0.5 * reg_weight
                    print("Reduced Reg weight to: ", reg_weight)

            loss.backward(retain_graph=True)
            optimizer_g.step()
            optimizer_f.step()
            zero_grad_all()
            if not args.method == 'S+T':
                output = G(im_data_tu)
                if args.method == 'ENT':
                    loss_t = entropy(F1, output, args.lamda)
                    #print(loss_t.cpu().data.item())
                    loss_t.backward()
                    optimizer_f.step()
                    optimizer_g.step()
                elif args.method == 'MME':
                    loss_t = adentropy(F1, output, args.lamda,
                                       class_dist_threshold_list)
                    loss_t.backward()
                    optimizer_f.step()
                    optimizer_g.step()
                else:
                    raise ValueError('Method cannot be recognized.')
                log_train = 'S {} T {} Train Ep: {} lr{} \t ' \
                            'Loss Classification: {:.6f} Reg: {:.6f} Loss T {:.6f} ' \
                            'Method {}\n'.format(args.source, args.target,
                                                step, lr, loss.data, reg_weight*reg_loss.data,
                                                -loss_t.data, args.method)
            else:
                log_train = 'S {} T {} Train Ep: {} lr{} \t ' \
                            'Loss Classification: {:.6f} Reg: {:.6f} Method {}\n'.\
                    format(args.source, args.target,
                        step, lr, loss.data, reg_weight * reg_loss.data,
                        args.method)
            G.zero_grad()
            F1.zero_grad()
            zero_grad_all()
            if step % args.log_interval == 0:
                print(log_train)
            if step % args.save_interval == 0 and step > 0:
                loss_val, acc_val = test(target_loader_val)
                loss_test, acc_test = test(target_loader_test)
                G.train()
                F1.train()
                if acc_val >= best_acc:
                    best_acc = acc_val
                    best_acc_test = acc_test
                    counter = 0
                else:
                    counter += 1
                if args.early:
                    if counter > args.patience:
                        break
                print('best acc test %f best acc val %f' %
                      (best_acc_test, acc_val))
                print('record %s' % record_file)
                with open(record_file, 'a') as f:
                    f.write('step %d best %f final %f \n' %
                            (step, best_acc_test, acc_val))
                G.train()
                F1.train()
                #saving model as a checkpoint dict having many things
                if args.save_check:
                    print('saving model')
                    is_best = True if counter == 0 else False
                    save_mymodel(
                        args, {
                            'step': step,
                            'arch': args.net,
                            'G_state_dict': G.state_dict(),
                            'F1_state_dict': F1.state_dict(),
                            'best_acc_test': best_acc_test,
                            'optimizer_g': optimizer_g.state_dict(),
                            'optimizer_f': optimizer_f.state_dict(),
                        }, is_best, time_stamp)

    # defining the function for in training validation and testing

    def test(loader):
        G.eval()
        F1.eval()
        test_loss = 0
        correct = 0
        size = 0
        num_class = len(class_list)
        output_all = np.zeros((0, num_class))

        # Setting the loss function to be used for the classification loss
        if args.loss == 'CE':
            criterion = nn.CrossEntropyLoss().to(device)
        if args.loss == 'FL':
            criterion = FocalLoss(alpha=1, gamma=args.gamma).to(device)
        if args.loss == 'CBFL':
            # Calculating the list having the number of examples per class which is going to be used in the CB focal loss
            beta = args.beta
            effective_num = 1.0 - np.power(beta, class_num_list)
            per_cls_weights = (1.0 - beta) / np.array(effective_num)
            per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(
                class_num_list)
            per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
            criterion = CBFocalLoss(weight=per_cls_weights,
                                    gamma=args.gamma).to(device)

        confusion_matrix = torch.zeros(num_class, num_class)
        with torch.no_grad():
            for batch_idx, data_t in enumerate(loader):
                im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
                gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
                feat = G(im_data_t)
                output1 = F1(feat)
                output_all = np.r_[output_all, output1.data.cpu().numpy()]
                size += im_data_t.size(0)
                pred1 = output1.data.max(1)[1]
                for t, p in zip(gt_labels_t.view(-1), pred1.view(-1)):
                    confusion_matrix[t.long(), p.long()] += 1
                correct += pred1.eq(gt_labels_t.data).cpu().sum()
                test_loss += criterion(output1, gt_labels_t) / len(loader)
        np.save("cf_target.npy", confusion_matrix)
        #print(confusion_matrix)
        print('\nTest set: Average loss: {:.4f}, '
              'Accuracy: {}/{} F1 ({:.0f}%)\n'.format(test_loss, correct, size,
                                                      100. * correct / size))
        return test_loss.data, 100. * float(correct) / size

    # defining the function for inference which is similar to the testing function as above but with some additional functionality for calculating the distances between the class prototypes and the predicted testing samples

    def infer(loader):
        G.eval()
        F1.eval()
        test_loss = 0
        correct = 0
        size = 0
        num_class = len(class_list)
        output_all = np.zeros((0, num_class))

        # Setting the loss function to be used for the classification loss
        if args.loss == 'CE':
            criterion = nn.CrossEntropyLoss().to(device)
        if args.loss == 'FL':
            criterion = FocalLoss(alpha=1, gamma=1).to(device)
        if args.loss == 'CBFL':
            # Calculating the list having the number of examples per class which is going to be used in the CB focal loss
            beta = 0.99
            effective_num = 1.0 - np.power(beta, class_num_list)
            per_cls_weights = (1.0 - beta) / np.array(effective_num)
            per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(
                class_num_list)
            per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
            criterion = CBFocalLoss(weight=per_cls_weights,
                                    gamma=0.5).to(device)
        # defining a nested list to store the cosine similarity (or distances) of the vectors from the class prototypes
        class_dist_list = []
        for i in range(num_class):
            empty_dists = []
            class_dist_list.append(empty_dists)

        confusion_matrix = torch.zeros(num_class, num_class)
        # iterating through the elements of the batch in the dataloader
        with torch.no_grad():
            for batch_idx, data_t in enumerate(loader):
                im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
                gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
                feat = G(im_data_t)
                output1 = F1(feat)
                output_all = np.r_[output_all, output1.data.cpu().numpy()]
                size += im_data_t.size(0)
                pred1 = output1.data.max(1)[1]
                # filling the elements of the confusion matrix
                for t, p in zip(gt_labels_t.view(-1), pred1.view(-1)):
                    confusion_matrix[t.long(), p.long()] += 1
                correct += pred1.eq(gt_labels_t.data).cpu().sum()
                test_loss += criterion(output1, gt_labels_t) / len(loader)
                pred1 = pred1.cpu().numpy()
                dists = output1.data.max(1)[0]
                dists = dists.cpu().numpy()

                # forming the lists of the distances of the predicted labels and the class prototype
                for label, dist in zip(pred1, dists):
                    label = int(label)
                    class_dist_list[label].append(dist)

        # sorting the distances in ascending order for each of the classes, also finding a threshold for similarity of each class
        summ = 0
        class_dist_threshold_list = []
        for class_ in range(len(class_dist_list)):
            class_dist_list[class_].sort()
            l = len(class_dist_list[class_])
            tenth = l / 10
            idx_tenth = math.ceil(tenth)
            class_dist_threshold_list.append(
                class_dist_list[class_][idx_tenth])

        print('\nTest set: Average loss: {:.4f}, '
              'Accuracy: {}/{} F1 ({:.2f}%)\n'.format(test_loss, correct, size,
                                                      100. * correct / size))
        return test_loss.data, 100. * float(
            correct) / size, class_dist_threshold_list

    # choosing the mode of the model - whether to be used for training or for inference
    if args.mode == 'train':
        print("Training the model...")
        train(None)
    if args.mode == 'infer':
        print("Infering from the model...")
        _, _, class_dist_threshold_list = infer(target_loader_test)
        print(
            "Starting model retraining using weights for entropy maximization..."
        )
        train(class_dist_threshold_list)
コード例 #5
0
ファイル: main.py プロジェクト: wisemanl12/884project
def train(args,weights=None):
    if os.path.exists(args.checkpath) == False:
        os.mkdir(args.checkpath)

    # 1. get dataset
    train_loader, val_loader, test_loader, class_list = return_dataset(args)

    # 2. generator
    if args.net == 'resnet50':
        G = ResBase50()
        inc = 2048
    elif args.net == 'resnet101':
        G = ResBase101()
        inc = 2048        
    elif args.net == "alexnet":
        G = AlexNetBase()
        inc = 4096
    elif args.net == "vgg":
        G = VGGBase()
        inc = 4096
    elif args.net == "inception_v3":
        G = models.inception_v3(pretrained=True) 
        inc = 1000
    elif args.net == "googlenet":
        G = models.googlenet(pretrained = True)
        inc = 1000
    elif args.net == "densenet":
        G = models.densenet161(pretrained = True)
        inc = 1000
    elif args.net == "resnext":
        G = models.resnext50_32x4d(pretrained = True)
        inc = 1000
    elif args.net == "squeezenet":
        G = models.squeezenet1_0(pretrained = True)
        inc = 1000
    else:
        raise ValueError('Model cannot be recognized.')

    params = []
    for key, value in dict(G.named_parameters()).items():
        if value.requires_grad:
            if 'classifier' not in key:
                params += [{'params': [value], 'lr': args.multi,
                            'weight_decay': 0.0005}]
            else:
                params += [{'params': [value], 'lr': args.multi * 10,
                            'weight_decay': 0.0005}]
    G.cuda()
    G.train()

    # 3. classifier
    F = Predictor(num_class=len(class_list), inc=inc, temp=args.T)
    weights_init(F)
    F.cuda()
    F.train()  

    # 4. optimizer
    optimizer_g = optim.SGD(params, momentum=0.9,
                            weight_decay=0.0005, nesterov=True)
    optimizer_f = optim.SGD(list(F.parameters()), lr=1.0, momentum=0.9,
                            weight_decay=0.0005, nesterov=True) 
    optimizer_g.zero_grad()
    optimizer_f.zero_grad()

    param_lr_g = []
    for param_group in optimizer_g.param_groups:
        param_lr_g.append(param_group["lr"])
    param_lr_f = []
    for param_group in optimizer_f.param_groups:
        param_lr_f.append(param_group["lr"])

    # 5. training
    data_iter_train = iter(train_loader)
    len_train = len(train_loader)
    best_acc = 0
    for step in range(args.steps):
        # update optimizer and lr
        optimizer_g = inv_lr_scheduler(param_lr_g, optimizer_g, step,
                                       init_lr=args.lr)
        optimizer_f = inv_lr_scheduler(param_lr_f, optimizer_f, step,
                                       init_lr=args.lr)
        lr = optimizer_f.param_groups[0]['lr']
        if step % len_train == 0:
            data_iter_train = iter(train_loader)

        # forwarding
        data = next(data_iter_train)        
        im_data = data[0].cuda()
        gt_label = data[1].cuda()

        feature = G(im_data)
        if args.net == 'inception_v3': #its not a tensor output but some 'inceptionOutput' object
          feature = feature.logits #get the tensor object
        if args.loss=='CrossEntropy': 
            #call with weights if present 
            loss = crossentropy(F, feature, gt_label, None if (weights == None) else weights[step % len_train])
            #although the weights might be defaulting to none
        elif args.loss=='FocalLoss':
            loss = focal_loss(F, feature, gt_label, None if (weights == None) else weights[step % len_train])
        elif args.loss=='ASoftmaxLoss':
            loss = asoftmax_loss(F, feature, gt_label, None if (weights == None) else weights[step % len_train])
        elif args.loss=='SmoothCrossEntropy':
            loss = smooth_crossentropy(F, feature, gt_label, None if (weights == None) else weights[step % len_train])
        else:
            print('To add new loss')         
        loss.backward()

        # backpropagation
        optimizer_g.step()
        optimizer_f.step()       
        optimizer_g.zero_grad()
        optimizer_f.zero_grad()
        G.zero_grad()
        F.zero_grad()

        if step%args.log_interval==0:
            log_train = 'Train iter: {} lr{} Loss Classification: {:.6f}\n'.format(step, lr, loss.data)
            print(log_train)
        if step and step%args.save_interval==0:
            # evaluate and save
            acc_val = eval(val_loader, G, F, class_list)     
            G.train()  
            F.train()  
            if args.save_check and acc_val >= best_acc:
                best_acc = acc_val
                print('saving model')
                print('best_acc: '+str(best_acc) + '  acc_val: '+str(acc_val))
                torch.save(G.state_dict(), os.path.join(args.checkpath,
                                        "G_net_{}_loss_{}.pth".format(args.net, args.loss)))
                torch.save(F.state_dict(), os.path.join(args.checkpath,
                                        "F_net_{}_loss_{}.pth".format(args.net, args.loss)))
    if (weights is not None):
      print("computing error rate")
      error_rate = eval_adaboost_error_rate(train_loader, G, F, class_list, weights)
      model_importance = torch.log((1-error_rate)/error_rate)/2
      #now update the weights
      print("updating weights")
      update_weights_adaboost(train_loader, G, F, class_list, weights, model_importance)
      return error_rate, model_importance
コード例 #6
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='SSDA Classification')
    parser.add_argument('--steps',
                        type=int,
                        default=50000,
                        metavar='N',
                        help='maximum number of iterations '
                        'to train (default: 50000)')
    parser.add_argument(
        '--method',
        type=str,
        default='MME',
        choices=['S+T', 'ENT', 'MME'],
        help='MME is proposed method, ENT is entropy minimization,'
        ' S+T is training only on labeled examples')
    parser.add_argument('--lr',
                        type=float,
                        default=0.01,
                        metavar='LR',
                        help='learning rate (default: 0.001)')
    parser.add_argument('--multi',
                        type=float,
                        default=0.1,
                        metavar='MLT',
                        help='learning rate multiplication')
    parser.add_argument('--T',
                        type=float,
                        default=0.05,
                        metavar='T',
                        help='temperature (default: 0.05)')
    parser.add_argument('--lamda',
                        type=float,
                        default=0.1,
                        metavar='LAM',
                        help='value of lamda')
    parser.add_argument('--save_check',
                        action='store_true',
                        default=False,
                        help='save checkpoint or not')
    parser.add_argument('--checkpath',
                        type=str,
                        default='./save_model_ssda',
                        help='dir to save checkpoint')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval',
                        type=int,
                        default=100,
                        metavar='N',
                        help='how many batches to wait before logging '
                        'training status')
    parser.add_argument('--save_interval',
                        type=int,
                        default=500,
                        metavar='N',
                        help='how many batches to wait before saving a model')
    parser.add_argument('--net',
                        type=str,
                        default='alexnet',
                        help='which network to use')
    parser.add_argument('--source',
                        type=str,
                        default='real',
                        help='source domain')
    parser.add_argument('--target',
                        type=str,
                        default='sketch',
                        help='target domain')
    parser.add_argument('--dataset',
                        type=str,
                        default='multi',
                        choices=['multi', 'office', 'office_home'],
                        help='the name of dataset')
    parser.add_argument('--num',
                        type=int,
                        default=3,
                        help='number of labeled examples in the target')
    parser.add_argument('--patience',
                        type=int,
                        default=5,
                        metavar='S',
                        help='early stopping to wait for improvment '
                        'before terminating. (default: 5 (5000 iterations))')
    parser.add_argument('--early',
                        action='store_false',
                        default=True,
                        help='early stopping on validation or not')
    parser.add_argument('--loss',
                        type=str,
                        default='CE',
                        choices=['CE', 'FL', 'CBFL'],
                        help='classifier loss function')
    parser.add_argument(
        '--attribute',
        type=str,
        default=None,
        choices=[
            'word2vec', 'glove.6B.100d.txt', 'glove.6B.300d.txt',
            'glove_anurag', 'fasttext_anurag', 'glove.840B.300d.txt',
            'glove.twitter.27B.200d.txt', 'glove.twitter.27B.50d.txt',
            'glove.42B.300d.txt', 'glove.6B.200d.txt', 'glove.6B.50d.txt',
            'glove.twitter.27B.100d.txt', 'glove.twitter.27B.25d.txt'
        ],
        help='semantic attribute feature vector to be used')
    parser.add_argument(
        '--dim',
        type=int,
        default=300,
        help=
        'dimensionality of the feature vector - make sure this in sync with the dim of the semantic attribute vector'
    )
    parser.add_argument(
        '--deep',
        type=int,
        default=0,
        help='type of classification predictor - 0 for shallow, 1 for deep')
    parser.add_argument('--mode',
                        type=str,
                        default='train',
                        choices=['train', 'infer'],
                        help='mode of script train or infer')

    args = parser.parse_args()
    print('Dataset %s Source %s Target %s Labeled num perclass %s Network %s' %
          (args.dataset, args.source, args.target, args.num, args.net))
    source_loader, target_loader, target_loader_unl, target_loader_val, \
        target_loader_test, class_num_list, class_list = return_dataset(args) # class num list is returned for CBFL
    use_gpu = torch.cuda.is_available()
    record_dir = 'record/%s/%s' % (args.dataset, args.method)
    if not os.path.exists(record_dir):
        os.makedirs(record_dir)
    record_file = os.path.join(
        record_dir, '%s_net_%s_%s_to_%s_num_%s' %
        (args.method, args.net, args.source, args.target, args.num))
    if use_gpu:
        device = 'cuda'
    else:
        device = 'cpu'

    print("Device: %s  Loss: %s  Attributes: %s" %
          (device, args.loss, args.attribute))

    if use_gpu:
        torch.cuda.manual_seed(args.seed)
    else:
        torch.manual_seed(args.seed)

    if args.net == 'resnet34':
        G = resnet34()
        inc = 512
    elif args.net == "alexnet":
        G = AlexNetBase()
        inc = 4096
    elif args.net == "vgg":
        G = VGGBase()
        inc = 4096
    else:
        raise ValueError('Model cannot be recognized.')
    params = []
    for key, value in dict(G.named_parameters()).items():
        if value.requires_grad:
            if 'classifier' not in key:
                params += [{
                    'params': [value],
                    'lr': 0.1,
                    'weight_decay': 0.0005
                }]
            else:
                params += [{
                    'params': [value],
                    'lr': 1,
                    'weight_decay': 0.0005
                }]

    # Setting the predictor layer
    if args.attribute is not None:
        if args.deep:
            F1 = Predictor_deep_attributes(num_class=len(class_list),
                                           inc=inc,
                                           feat_dim=args.dim)
            print("Using: Predictor_deep_attributes")
        else:
            F1 = Predictor_attributes(num_class=len(class_list),
                                      inc=inc,
                                      feat_dim=args.dim)
            print("Using: Predictor_attributes")
    else:
        if args.deep:
            F1 = Predictor_deep(num_class=len(class_list), inc=inc)
            print("Using: Predictor_deep")
        else:
            F1 = Predictor(num_class=len(class_list), inc=inc, temp=args.T)
            print("Using: Predictor")

    # Initializing the weights of the prediction layer
    weights_init(F1)
    # Setting the prediction layer weights as the semantic attributes
    if args.attribute is not None:
        att = np.load('attributes/%s_%s.npy' % (args.dataset, args.attribute))
        if use_gpu:
            att = nn.Parameter(torch.cuda.FloatTensor(att))
        else:
            att = nn.Parameter(torch.FloatTensor(att, device="cpu"))
        if args.deep:
            F1.fc3.weight = att
        else:
            F1.fc2.weight = att
        print("attribute shape is: ", att.shape)

    lr = args.lr

    # loading the model checkpoint - and printing some parameters relating to the checkpoints
    main_dict = torch.load(args.checkpath + "/" + args.net + "_" +
                           args.method + "_" + args.source + "_" +
                           args.target + ".ckpt.best.pth.tar")
    G.load_state_dict(main_dict['G_state_dict'])
    F1.load_state_dict(main_dict['F1_state_dict'])
    print("Loaded pretrained model weights")
    print("Loaded weights from step: ", main_dict['step'])
    print("Current best test acc is: ", main_dict['best_acc_test'])
    G.to(device)
    F1.to(device)
    # Loading the txt file having the weights and paths of the image file as a data frame
    df = pd.read_csv(args.method + '_' + main_dict['arch'] + '_' +
                     str(main_dict['step']) + '.txt',
                     sep=" ",
                     header=None)
    df = df[[3, 0]]
    df = df.rename(columns={3: "img", 0: "weight"})
    im_data_s = torch.FloatTensor(1)
    im_data_t = torch.FloatTensor(1)
    im_data_tu = torch.FloatTensor(1)
    gt_labels_t = torch.LongTensor(1)
    gt_labels_s = torch.LongTensor(1)
    sample_labels_t = torch.LongTensor(1)
    sample_labels_s = torch.LongTensor(1)

    im_data_s = im_data_s.to(device)
    im_data_t = im_data_t.to(device)
    im_data_tu = im_data_tu.to(device)
    gt_labels_s = gt_labels_s.to(device)
    gt_labels_t = gt_labels_t.to(device)
    sample_labels_t = sample_labels_t.to(device)
    sample_labels_s = sample_labels_s.to(device)

    im_data_s = Variable(im_data_s)
    im_data_t = Variable(im_data_t)
    im_data_tu = Variable(im_data_tu)
    gt_labels_s = Variable(gt_labels_s)
    gt_labels_t = Variable(gt_labels_t)
    sample_labels_t = Variable(sample_labels_t)
    sample_labels_s = Variable(sample_labels_s)

    if os.path.exists(args.checkpath) == False:
        os.mkdir(args.checkpath)

    def train():
        G.train()
        F1.train()
        optimizer_g = optim.SGD(params,
                                momentum=0.9,
                                weight_decay=0.0005,
                                nesterov=True)
        optimizer_f = optim.SGD(list(F1.parameters()),
                                lr=1.0,
                                momentum=0.9,
                                weight_decay=0.0005,
                                nesterov=True)

        # Loading the states of the two optmizers
        optimizer_g.load_state_dict(main_dict['optimizer_g'])
        optimizer_f.load_state_dict(main_dict['optimizer_f'])
        print("Loaded optimizer states")

        def zero_grad_all():
            optimizer_g.zero_grad()
            optimizer_f.zero_grad()

        param_lr_g = []
        for param_group in optimizer_g.param_groups:
            param_lr_g.append(param_group["lr"])
        param_lr_f = []
        for param_group in optimizer_f.param_groups:
            param_lr_f.append(param_group["lr"])

        # Setting the loss function to be used for the classification loss
        if args.loss == 'CE':
            criterion = nn.CrossEntropyLoss().to(device)
        if args.loss == 'FL':
            criterion = FocalLoss(alpha=1, gamma=1).to(device)
        if args.loss == 'CBFL':
            # Calculating the list having the number of examples per class which is going to be used in the CB focal loss
            beta = 0.99
            effective_num = 1.0 - np.power(beta, class_num_list)
            per_cls_weights = (1.0 - beta) / np.array(effective_num)
            per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(
                class_num_list)
            per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
            criterion = CBFocalLoss(weight=per_cls_weights,
                                    gamma=0.5).to(device)

        all_step = args.steps
        data_iter_s = iter(source_loader)
        data_iter_t = iter(target_loader)
        data_iter_t_unl = iter(target_loader_unl)
        len_train_source = len(source_loader)
        len_train_target = len(target_loader)
        len_train_target_semi = len(target_loader_unl)
        best_acc = 0
        counter = 0
        for step in range(all_step):
            optimizer_g = inv_lr_scheduler(param_lr_g,
                                           optimizer_g,
                                           step,
                                           init_lr=args.lr)
            optimizer_f = inv_lr_scheduler(param_lr_f,
                                           optimizer_f,
                                           step,
                                           init_lr=args.lr)
            lr = optimizer_f.param_groups[0]['lr']
            # condition for restarting the iteration for each of the data loaders
            if step % len_train_target == 0:
                data_iter_t = iter(target_loader)
            if step % len_train_target_semi == 0:
                data_iter_t_unl = iter(target_loader_unl)
            if step % len_train_source == 0:
                data_iter_s = iter(source_loader)
            data_t = next(data_iter_t)
            data_t_unl = next(data_iter_t_unl)
            data_s = next(data_iter_s)
            with torch.no_grad():
                im_data_s.resize_(data_s[0].size()).copy_(data_s[0])
                gt_labels_s.resize_(data_s[1].size()).copy_(data_s[1])
                im_data_t.resize_(data_t[0].size()).copy_(data_t[0])
                gt_labels_t.resize_(data_t[1].size()).copy_(data_t[1])
                im_data_tu.resize_(data_t_unl[0].size()).copy_(data_t_unl[0])

            zero_grad_all()
            data = torch.cat((im_data_s, im_data_t), 0)
            target = torch.cat((gt_labels_s, gt_labels_t), 0)
            output = G(data)
            out1 = F1(output)
            loss = criterion(out1, target)
            loss.backward(retain_graph=True)
            optimizer_g.step()
            optimizer_f.step()
            zero_grad_all()
            # list of the weights and image paths in this batch
            img_paths = list(data_t_unl[2])
            df1 = df.loc[df['img'].isin(img_paths)]
            df1 = df1['weight']
            weight_list = list(df1)

            if not args.method == 'S+T':
                output = G(im_data_tu)
                if args.method == 'ENT':
                    loss_t = entropy(F1, output, args.lamda)
                    loss_t.backward()
                    optimizer_f.step()
                    optimizer_g.step()
                elif args.method == 'MME':
                    loss_t = adentropy(F1, output, args.lamda, weight_list)
                    loss_t.backward()
                    optimizer_f.step()
                    optimizer_g.step()
                else:
                    raise ValueError('Method cannot be recognized.')
                log_train = 'S {} T {} Train Ep: {} lr{} \t ' \
                            'Loss Classification: {:.6f} Loss T {:.6f} ' \
                            'Method {}\n'.format(args.source, args.target,
                                                step, lr, loss.data,
                                                -loss_t.data, args.method)
            else:
                log_train = 'S {} T {} Train Ep: {} lr{} \t ' \
                            'Loss Classification: {:.6f} Method {}\n'.\
                    format(args.source, args.target,
                        step, lr, loss.data,
                        args.method)
            G.zero_grad()
            F1.zero_grad()
            zero_grad_all()
            if step % args.log_interval == 0:
                print(log_train)
            if step % args.save_interval == 0 and step > 0:
                loss_val, acc_val = test(target_loader_val)
                loss_test, acc_test = test(target_loader_test)
                G.train()
                F1.train()
                if acc_test >= best_acc:
                    best_acc = acc_test
                    best_acc_test = acc_test
                    counter = 0
                else:
                    counter += 1
                if args.early:
                    if counter > args.patience:
                        break
                print('best acc test %f best acc val %f' %
                      (best_acc_test, acc_val))
                print('record %s' % record_file)
                with open(record_file, 'a') as f:
                    f.write('step %d best %f final %f \n' %
                            (step, best_acc_test, acc_val))
                G.train()
                F1.train()
                #saving model as a checkpoint dict having many things
                if args.save_check:
                    print('saving model')
                    is_best = True if counter == 0 else False
                    save_mymodel(
                        args, {
                            'step': step,
                            'arch': args.net,
                            'G_state_dict': G.state_dict(),
                            'F1_state_dict': F1.state_dict(),
                            'best_acc_test': best_acc_test,
                            'optimizer_g': optimizer_g.state_dict(),
                            'optimizer_f': optimizer_f.state_dict(),
                        }, is_best)

    # defining the function for in training validation and testing

    def test(loader):
        G.eval()
        F1.eval()
        test_loss = 0
        correct = 0
        size = 0
        num_class = len(class_list)
        output_all = np.zeros((0, num_class))

        # Setting the loss function to be used for the classification loss
        if args.loss == 'CE':
            criterion = nn.CrossEntropyLoss().to(device)
        if args.loss == 'FL':
            criterion = FocalLoss(alpha=1, gamma=1).to(device)
        if args.loss == 'CBFL':
            # Calculating the list having the number of examples per class which is going to be used in the CB focal loss
            beta = 0.99
            effective_num = 1.0 - np.power(beta, class_num_list)
            per_cls_weights = (1.0 - beta) / np.array(effective_num)
            per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(
                class_num_list)
            per_cls_weights = torch.FloatTensor(per_cls_weights).to(device)
            criterion = CBFocalLoss(weight=per_cls_weights,
                                    gamma=0.5).to(device)

        confusion_matrix = torch.zeros(num_class, num_class)
        with torch.no_grad():
            for batch_idx, data_t in enumerate(loader):
                im_data_t.data.resize_(data_t[0].size()).copy_(data_t[0])
                gt_labels_t.data.resize_(data_t[1].size()).copy_(data_t[1])
                feat = G(im_data_t)
                output1 = F1(feat)
                output_all = np.r_[output_all, output1.data.cpu().numpy()]
                size += im_data_t.size(0)
                pred1 = output1.data.max(1)[1]
                for t, p in zip(gt_labels_t.view(-1), pred1.view(-1)):
                    confusion_matrix[t.long(), p.long()] += 1
                correct += pred1.eq(gt_labels_t.data).cpu().sum()
                test_loss += criterion(output1, gt_labels_t) / len(loader)
        np.save("cf_target.npy", confusion_matrix)
        #print(confusion_matrix)
        print('\nTest set: Average loss: {:.4f}, '
              'Accuracy: {}/{} F1 ({:.0f}%)\n'.format(test_loss, correct, size,
                                                      100. * correct / size))
        return test_loss.data, 100. * float(correct) / size

    print("Starting stage 2 training of the model ...")
    train()
コード例 #7
0

## F1: Source-based Classifier
## F2: Target-based Classifier
if "resnet" in args.net:
    F1 = Predictor_deep(num_class=len(class_list),
                        inc=inc)
    F2 = Predictor_deep(num_class=4,
                        inc=inc)
else:
    #### F1: Semantic Classifier; F2: Rotation Classifier
    F1 = Predictor(num_class=len(class_list), inc=inc,
                   temp=args.T)
    F2 = Predictor(num_class=4, inc=inc,
                   temp=args.T)
weights_init(F1) #### =====================
lr = args.lr
G.cuda()
F1.cuda()
F2.cuda()


if os.path.exists(args.checkpath) == False:
    os.mkdir(args.checkpath)


def train():
    G.train()
    F1.train()
    F2.train()
    optimizer_g = optim.SGD(params, momentum=0.9,