def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples
def _create_examples(self, lst, set_type): """Creates examples for the training and dev sets.""" examples = [] for _id, data in tqdm(enumerate(lst), desc='Processing NLI'): guid = "%s-%s" % (set_type, _id) text_a = data['data'][0] text_b = data['data'][1] label = data['label'] assert label in self.get_labels(), f"Label: {label}, data:{data}" examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
def _create_examples(self, data, set_type): #dict_keys(['orig_title', 'duplicate_title', 'duplicate_id', 'orig_id', 'label']) """Creates examples for the training and dev sets.""" examples = [] for datum in tqdm(data, desc="parsing"): guid = "%s-%s-%s" % (set_type, datum["orig_id"], datum["duplicate_id"]) text_a = datum['orig_title'] text_b = datum['duplicate_title'] label = int(datum['label']) assert label in self.get_labels() examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label) ) return examples
def _create_examples(self, df, set_type): """Creates examples for the training and dev sets.""" examples = [] for _id, row in tqdm(df.iterrows(), desc="Preparing Data", total=len(df)): guid = "%s-%s" % (set_type, row["id"]) text_a = str(row["question1"]) text_b = str(row["question2"]) label = int(row["is_duplicate"]) assert label in self.get_labels() examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label) ) return examples
def _create_examples(self, lst, set_type): """Creates examples for the training and dev sets.""" examples = [] lst = lst[0] for _id, key in tqdm(enumerate(lst), desc="Preparing Data", total=len(lst)): data = lst[key] guid = "%s-%s" % (set_type, _id) text_a = data["data"][0] text_b = data["data"][1] label = int(data["label"]) assert label in self.get_labels() examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label) ) return examples
def _create_examples(self, questions, set_type): """Creates examples for the training and dev sets.""" examples = [] def process_text(s, sent_a=True): return s for qid in questions: question_text = questions[qid].text for answer in questions[qid].answers: guid = "%s-%s" % (set_type, str(qid)+"_"+str(answer.aid)) answer_text = answer.text text_a = process_text(question_text) text_b = process_text(answer_text, sent_a=False) label = 1 if answer.reference_score > 2 else 0 examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy()))
def glue_convert_examples_to_features(examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, tokenize=True): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False #if is_tf_available() and isinstance(examples, tf.data.Dataset): # is_tf_dataset = True if task is not None: processor = glue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = glue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} print(label_map) features = [] for (ex_index, example) in tqdm(enumerate(examples), desc="Iterating"): try: if ex_index % 10000 == 0: logger.info("Writing example %d" % (ex_index)) if is_tf_dataset: example = InputExample(example['idx'].numpy(), example['sentence1'].numpy().decode('utf-8'), example['sentence2'].numpy().decode('utf-8'), example['label'].numpy().decode('utf-8')) tokens_a = tokenizer.tokenize(example.text_a) if tokenize else example.text_a tokens_b = tokenizer.tokenize(example.text_b) if tokenize else example.text_b _truncate_seq_pair(tokens_a, tokens_b, max_length-3) inputs = tokenizer.encode_plus( tokens_a, tokens_b, add_special_tokens=True, max_length=max_length, truncate_first_sequence=True # We're truncating the first sequence in priority ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_tokens: %s" % (tokenizer.tokenize(example.text_a+ example.text_b))) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label, tokens_a = tokens_a, tokens_b = tokens_b)) except ValueError: print("Bad input", example.text_a, example.text_b) continue if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ({'input_ids': ex.input_ids, 'attention_mask': ex.attention_mask, 'token_type_ids': ex.token_type_ids}, ex.label) return tf.data.Dataset.from_generator(gen, ({'input_ids': tf.int32, 'attention_mask': tf.int32, 'token_type_ids': tf.int32}, tf.int64), ({'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None]), 'token_type_ids': tf.TensorShape([None])}, tf.TensorShape([]))) return features
def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['premise'].numpy().decode('utf-8'), tensor_dict['hypothesis'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy()))