コード例 #1
0
ファイル: main_xgb.py プロジェクト: leobix/safi
def binary_accuracy_indirect(predict, true):
    pred = utils.get_all_dangerous_scenarios(predict['speed'],
                                             predict['cos_wind_dir'],
                                             predict['sin_wind_dir'])
    true = utils.get_all_dangerous_scenarios(true['speed'],
                                             true['cos_wind_dir'],
                                             true['sin_wind_dir'])
    pred_auc = metrics.roc_auc_score(true, pred).round(3)
    return pred_auc  #, base_auc, pred_score, base_score,
コード例 #2
0
def binary_accuracy(predict, true, baseline):
    pred = utils.get_all_dangerous_scenarios(predict['speed'],
                                             predict['cos_wind_dir'],
                                             predict['sin_wind_dir'])
    true = utils.get_all_dangerous_scenarios(true['speed'],
                                             true['cos_wind_dir'],
                                             true['sin_wind_dir'])
    base = utils.get_all_dangerous_scenarios(baseline['speed'],
                                             baseline['cos_wind_dir'],
                                             baseline['sin_wind_dir'])

    #calculate prediction accuracies
    pred_score = metrics.accuracy_score(pred, true).round(3)
    base_score = metrics.accuracy_score(base, true).round(3)
    #calculate auc
    pred_auc = metrics.roc_auc_score(pred, true).round(3)
    base_auc = metrics.roc_auc_score(base, true).round(3)
    return pred_score, base_score, pred_auc, base_auc
コード例 #3
0
ファイル: main_rf.py プロジェクト: leobix/safi
    }

    # predict_train, predict_test = run_rf(steps_in=1, steps_out=1)

    for t in t_list:
        #run model
        predict_train, predict_test = run_rf(steps_in, steps_out=t)

        # #calculate angles from sin and cosine
        # predict['angle'] = predict.apply(lambda row: utils.get_angle_in_degree(row['cos_wind_dir'],row['sin_wind_dir']),axis = 1)
        # true['angle'] = true.apply(lambda row: utils.get_angle_in_degree(row['cos_wind_dir'],row['sin_wind_dir']), axis = 1)
        # base['angle'] = base.apply(lambda row: utils.get_angle_in_degree(row['cos_wind_dir'],row['sin_wind_dir']), axis = 1)

        predict_train[
            'dangerous_indirect'] = utils.get_all_dangerous_scenarios(
                predict_train['speed'], predict_train['cos_wind_dir'],
                predict_train['sin_wind_dir'])
        predict_test['dangerous_indirect'] = utils.get_all_dangerous_scenarios(
            predict_test['speed'], predict_test['cos_wind_dir'],
            predict_test['sin_wind_dir'])

        predict_train.to_csv('results/rf_result_train_' + str(t) + '.csv',
                             index=False)
        predict_test.to_csv('results/rf_result_test_' + str(t) + '.csv',
                            index=False)

        # # #calculate mae for regression
        # mae_speed, mae_speed_base, mae_angle, mae_angle_base = get_mae_indirect(predict, true, base)
        # #calculate accuracy & auc for scenario prediction
        # pred_scenario_indirect = scenario_accuracy_indirect(predict, true)
        # pred_dangerous_indirect= binary_accuracy_indirect(predict, true)