コード例 #1
0
def main():
    args = get_args()
    # get student config
    student_cfg = get_student_cfg(cfg, args.student_file)
    student_cfg.LOG_DIR = args.log
    student_cfg.PRINT_FREQ = int(args.print_freq)
    if args.mode == 'test':
        student_cfg.DATASET.TEST = 'test2017'
    logger, final_output_dir, tb_log_dir = create_logger(
        student_cfg, args.student_file, 'valid')

    logger.info(pprint.pformat(args))
    logger.info(student_cfg)

    # cudnn related setting
    cudnn.benchmark = student_cfg.CUDNN.BENCHMARK
    torch.backends.cudnn.deterministic = student_cfg.CUDNN.DETERMINISTIC
    torch.backends.cudnn.enabled = student_cfg.CUDNN.ENABLED

    dev = 'cuda' if torch.cuda.is_available() else 'cpu'

    model = PoseHigherResolutionNet(student_cfg)
    model.load_state_dict(torch.load(args.model_file))

    dump_input = torch.rand(
        (1, 3, student_cfg.DATASET.INPUT_SIZE, student_cfg.DATASET.INPUT_SIZE))
    logger.info(
        get_model_summary(model, dump_input, verbose=student_cfg.VERBOSE))

    model = torch.nn.DataParallel(model, device_ids=student_cfg.GPUS).cuda()
    model.eval()

    data_loader, test_dataset = make_test_dataloader(student_cfg)

    transforms = torchvision.transforms.Compose([
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
    ])

    parser = HeatmapParser(student_cfg)
    all_preds = []
    all_scores = []

    pbar = tqdm(
        total=len(test_dataset)) if student_cfg.TEST.LOG_PROGRESS else None
    for i, (images, annos) in enumerate(data_loader):
        assert 1 == images.size(0), 'Test batch size should be 1'

        image = images[0].cpu().numpy()
        # size at scale 1.0
        base_size, center, scale = get_multi_scale_size(
            image, student_cfg.DATASET.INPUT_SIZE, 1.0,
            min(student_cfg.TEST.SCALE_FACTOR))

        with torch.no_grad():
            final_heatmaps = None
            tags_list = []
            for idx, s in enumerate(
                    sorted(student_cfg.TEST.SCALE_FACTOR, reverse=True)):
                input_size = student_cfg.DATASET.INPUT_SIZE
                image_resized, center, scale = resize_align_multi_scale(
                    image, input_size, s, min(student_cfg.TEST.SCALE_FACTOR))
                image_resized = transforms(image_resized)
                image_resized = image_resized.unsqueeze(0).cuda()

                outputs, heatmaps, tags = get_multi_stage_outputs(
                    student_cfg, model, image_resized,
                    student_cfg.TEST.FLIP_TEST, student_cfg.TEST.PROJECT2IMAGE,
                    base_size)

                final_heatmaps, tags_list = aggregate_results(
                    student_cfg, s, final_heatmaps, tags_list, heatmaps, tags)

            final_heatmaps = final_heatmaps / float(
                len(student_cfg.TEST.SCALE_FACTOR))
            tags = torch.cat(tags_list, dim=4)
            grouped, scores = parser.parse(final_heatmaps, tags,
                                           student_cfg.TEST.ADJUST,
                                           student_cfg.TEST.REFINE)

            final_results = get_final_preds(
                grouped, center, scale,
                [final_heatmaps.size(3),
                 final_heatmaps.size(2)])

        if student_cfg.TEST.LOG_PROGRESS:
            pbar.update()

        if i % student_cfg.PRINT_FREQ == 0:
            prefix = '{}_{}'.format(
                os.path.join(final_output_dir, 'result_valid'), i)
            # logger.info('=> write {}'.format(prefix))
            save_valid_image(image,
                             final_results,
                             '{}.jpg'.format(prefix),
                             dataset=test_dataset.name)
            # save_debug_images(cfg, image_resized, None, None, outputs, prefix)

        all_preds.append(final_results)
        all_scores.append(scores)

    if student_cfg.TEST.LOG_PROGRESS:
        pbar.close()

    name_values, _ = test_dataset.evaluate(cfg, all_preds, all_scores,
                                           final_output_dir)

    if isinstance(name_values, list):
        for name_value in name_values:
            _print_name_value(logger, name_value, cfg.MODEL.NAME)
    else:
        _print_name_value(logger, name_values, cfg.MODEL.NAME)
コード例 #2
0
def main():
    args = parse_args()
    update_config(cfg, args)
    check_config(cfg)

    logger, final_output_dir, tb_log_dir = create_logger(
        cfg, args.cfg, 'valid')

    logger.info(pprint.pformat(args))
    logger.info(cfg)

    # cudnn related setting
    cudnn.benchmark = cfg.CUDNN.BENCHMARK
    torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
    torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED

    model = eval('models.' + cfg.MODEL.NAME + '.get_pose_net')(cfg,
                                                               is_train=False)

    dump_input = torch.rand(
        (1, 3, cfg.DATASET.INPUT_SIZE, cfg.DATASET.INPUT_SIZE))
    logger.info(get_model_summary(model, dump_input, verbose=cfg.VERBOSE))

    if cfg.FP16.ENABLED:
        model = network_to_half(model)

    if cfg.TEST.MODEL_FILE:
        logger.info('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
        model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=True)
    else:
        model_state_file = os.path.join(final_output_dir, 'model_best.pth.tar')
        logger.info('=> loading model from {}'.format(model_state_file))
        model.load_state_dict(torch.load(model_state_file))

    model = torch.nn.DataParallel(model, device_ids=cfg.GPUS).cuda()
    model.eval()

    data_loader, test_dataset = make_test_dataloader(cfg)

    if cfg.MODEL.NAME == 'pose_hourglass':
        transforms = torchvision.transforms.Compose([
            torchvision.transforms.ToTensor(),
        ])
    else:
        transforms = torchvision.transforms.Compose([
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
        ])

    parser = HeatmapParser(cfg)
    all_preds = []
    all_scores = []

    # pbar = tqdm(total=len(test_dataset)) if cfg.TEST.LOG_PROGRESS else None
    pbar = tqdm(total=len(test_dataset))
    for i, (images, annos) in enumerate(data_loader):
        assert 1 == images.size(0), 'Test batch size should be 1'

        image = images[0].cpu().numpy()
        # size at scale 1.0
        base_size, center, scale = get_multi_scale_size(
            image, cfg.DATASET.INPUT_SIZE, 1.0, min(cfg.TEST.SCALE_FACTOR))

        with torch.no_grad():
            final_heatmaps = None
            tags_list = []
            for idx, s in enumerate(sorted(cfg.TEST.SCALE_FACTOR,
                                           reverse=True)):
                input_size = cfg.DATASET.INPUT_SIZE
                image_resized, center, scale = resize_align_multi_scale(
                    image, input_size, s, min(cfg.TEST.SCALE_FACTOR))
                image_resized = transforms(image_resized)
                image_resized = image_resized.unsqueeze(0).cuda()

                outputs, heatmaps, tags = get_multi_stage_outputs(
                    cfg, model, image_resized, cfg.TEST.FLIP_TEST,
                    cfg.TEST.PROJECT2IMAGE, base_size)

                final_heatmaps, tags_list = aggregate_results(
                    cfg, s, final_heatmaps, tags_list, heatmaps, tags)

            final_heatmaps = final_heatmaps / float(len(cfg.TEST.SCALE_FACTOR))
            tags = torch.cat(tags_list, dim=4)
            grouped, scores = parser.parse(final_heatmaps, tags,
                                           cfg.TEST.ADJUST, cfg.TEST.REFINE)

            final_results = get_final_preds(
                grouped, center, scale,
                [final_heatmaps.size(3),
                 final_heatmaps.size(2)])
            if cfg.RESCORE.USE:
                try:
                    scores = rescore_valid(cfg, final_results, scores)
                except:
                    print("got one.")
        # if cfg.TEST.LOG_PROGRESS:
        #     pbar.update()
        pbar.update()

        if i % cfg.PRINT_FREQ == 0:
            prefix = '{}_{}'.format(
                os.path.join(final_output_dir, 'result_valid'), i)
            # logger.info('=> write {}'.format(prefix))
            save_valid_image(image,
                             final_results,
                             '{}.jpg'.format(prefix),
                             dataset=test_dataset.name)
            # for scale_idx in range(len(outputs)):
            #     prefix_scale = prefix + '_output_{}'.format(
            #         # cfg.DATASET.OUTPUT_SIZE[scale_idx]
            #         scale_idx
            #     )
            #     save_debug_images(
            #         cfg, images, None, None,
            #         outputs[scale_idx], prefix_scale
            #     )
        all_preds.append(final_results)
        all_scores.append(scores)

    if cfg.TEST.LOG_PROGRESS:
        pbar.close()

    name_values, _ = test_dataset.evaluate(cfg, all_preds, all_scores,
                                           final_output_dir)

    if isinstance(name_values, list):
        for name_value in name_values:
            _print_name_value(logger, name_value, cfg.MODEL.NAME)
    else:
        _print_name_value(logger, name_values, cfg.MODEL.NAME)