コード例 #1
0
    def create_network(self, blocks):
        models = nn.ModuleList()

        prev_filters = 3
        out_filters = []
        prev_stride = 1
        out_strides = []
        conv_id = 0
        for block in blocks:
            if block['type'] == 'net':
                prev_filters = int(block['channels'])
                continue
            elif block['type'] == 'convolutional':
                conv_id = conv_id + 1
                batch_normalize = int(block['batch_normalize'])
                filters = int(block['filters'])
                kernel_size = int(block['size'])
                stride = int(block['stride'])
                is_pad = int(block['pad'])
                pad = (kernel_size - 1) // 2 if is_pad else 0
                activation = block['activation']
                model = nn.Sequential()
                if batch_normalize:
                    model.add_module('conv{0}'.format(conv_id),
                                     nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias=False))
                    model.add_module('bn{0}'.format(conv_id), nn.BatchNorm2d(filters))
                    # model.add_module('bn{0}'.format(conv_id), BN2d(filters))
                else:
                    model.add_module('conv{0}'.format(conv_id),
                                     nn.Conv2d(prev_filters, filters, kernel_size, stride, pad))
                if activation == 'leaky':
                    model.add_module('leaky{0}'.format(conv_id), nn.LeakyReLU(0.1, inplace=True))
                elif activation == 'relu':
                    model.add_module('relu{0}'.format(conv_id), nn.ReLU(inplace=True))
                elif activation == 'mish':
                    model.add_module('mish{0}'.format(conv_id), Mish())
                else:
                    print("convalution havn't activate {}".format(activation))

                prev_filters = filters
                out_filters.append(prev_filters)
                prev_stride = stride * prev_stride
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'maxpool':
                pool_size = int(block['size'])
                stride = int(block['stride'])
                if stride > 1:
                    model = nn.MaxPool2d(pool_size, stride)
                else:
                    model = MaxPoolStride1(pool_size)
                out_filters.append(prev_filters)
                prev_stride = stride * prev_stride
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'avgpool':
                model = GlobalAvgPool2d()
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'softmax':
                model = nn.Softmax()
                out_strides.append(prev_stride)
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'cost':
                if block['_type'] == 'sse':
                    model = nn.MSELoss(size_average=True)
                elif block['_type'] == 'L1':
                    model = nn.L1Loss(size_average=True)
                elif block['_type'] == 'smooth':
                    model = nn.SmoothL1Loss(size_average=True)
                out_filters.append(1)
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'reorg':
                stride = int(block['stride'])
                prev_filters = stride * stride * prev_filters
                out_filters.append(prev_filters)
                prev_stride = prev_stride * stride
                out_strides.append(prev_stride)
                models.append(Reorg(stride))
            elif block['type'] == 'upsample':
                stride = int(block['stride'])
                out_filters.append(prev_filters)
                prev_stride = prev_stride // stride
                out_strides.append(prev_stride)
                # models.append(nn.Upsample(scale_factor=stride, mode='nearest'))
                models.append(Upsample(stride))
            elif block['type'] == 'route':
                layers = block['layers'].split(',')
                ind = len(models)
                layers = [int(i) if int(i) > 0 else int(i) + ind for i in layers]
                if len(layers) == 1:
                    prev_filters = out_filters[layers[0]]
                    prev_stride = out_strides[layers[0]]
                elif len(layers) == 2:
                    assert (layers[0] == ind - 1)
                    prev_filters = out_filters[layers[0]] + out_filters[layers[1]]
                    prev_stride = out_strides[layers[0]]
                elif len(layers) == 4:
                    assert (layers[0] == ind - 1)
                    prev_filters = out_filters[layers[0]] + out_filters[layers[1]] + out_filters[layers[2]] + \
                                   out_filters[layers[3]]
                    prev_stride = out_strides[layers[0]]
                else:
                    print("route error!!!")

                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(EmptyModule())
            elif block['type'] == 'shortcut':
                ind = len(models)
                prev_filters = out_filters[ind - 1]
                out_filters.append(prev_filters)
                prev_stride = out_strides[ind - 1]
                out_strides.append(prev_stride)
                models.append(EmptyModule())
            elif block['type'] == 'connected':
                filters = int(block['output'])
                if block['activation'] == 'linear':
                    model = nn.Linear(prev_filters, filters)
                elif block['activation'] == 'leaky':
                    model = nn.Sequential(
                        nn.Linear(prev_filters, filters),
                        nn.LeakyReLU(0.1, inplace=True))
                elif block['activation'] == 'relu':
                    model = nn.Sequential(
                        nn.Linear(prev_filters, filters),
                        nn.ReLU(inplace=True))
                prev_filters = filters
                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'region':
                loss = RegionLoss()
                anchors = block['anchors'].split(',')
                loss.anchors = [float(i) for i in anchors]
                loss.num_classes = int(block['classes'])
                loss.num_anchors = int(block['num'])
                loss.anchor_step = len(loss.anchors) // loss.num_anchors
                loss.object_scale = float(block['object_scale'])
                loss.noobject_scale = float(block['noobject_scale'])
                loss.class_scale = float(block['class_scale'])
                loss.coord_scale = float(block['coord_scale'])
                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(loss)
            elif block['type'] == 'yolo':
                yolo_layer = YoloLayer()
                anchors = block['anchors'].split(',')
                anchor_mask = block['mask'].split(',')
                yolo_layer.anchor_mask = [int(i) for i in anchor_mask]
                yolo_layer.anchors = [float(i) for i in anchors]
                yolo_layer.num_classes = int(block['classes'])
                yolo_layer.num_anchors = int(block['num'])
                yolo_layer.anchor_step = len(yolo_layer.anchors) // yolo_layer.num_anchors
                yolo_layer.stride = prev_stride
                # yolo_layer.object_scale = float(block['object_scale'])
                # yolo_layer.noobject_scale = float(block['noobject_scale'])
                # yolo_layer.class_scale = float(block['class_scale'])
                # yolo_layer.coord_scale = float(block['coord_scale'])
                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(yolo_layer)
            else:
                print('unknown type %s' % (block['type']))

        return models
コード例 #2
0
    def create_network(self, blocks):
        '''
        根据解析结果List 构建pytorch模型
        '''
        # 新建个 模型List
        models = nn.ModuleList()

        prev_filters = 3
        out_filters = []  # 某模块的输出通道数
        prev_stride = 1
        out_strides = []
        conv_id = 0
        for block in blocks:
            #
            if block['type'] == 'net':
                prev_filters = int(block['channels'])  # 输入图像的通道数
                continue
            elif block['type'] == 'convolutional':
                '''
                每个卷积层后都会跟一个BN层和一个 激活函数,算作list中的一行
                '''
                conv_id = conv_id + 1
                batch_normalize = int(block['batch_normalize'])
                filters = int(block['filters'])
                kernel_size = int(block['size'])
                stride = int(block['stride'])
                # pad = 1 表示 使用pad,但是具体pad值时按照kernel_size计算的
                is_pad = int(block['pad'])
                pad = (kernel_size - 1) // 2 if is_pad else 0
                activation = block['activation']
                model = nn.Sequential()
                # bn=1 表示 使用bn,具体值为 输出通道数
                if batch_normalize:
                    model.add_module(
                        'conv{0}'.format(conv_id),
                        nn.Conv2d(prev_filters,
                                  filters,
                                  kernel_size,
                                  stride,
                                  pad,
                                  bias=False))
                    model.add_module('bn{0}'.format(conv_id),
                                     nn.BatchNorm2d(filters))
                    # model.add_module('bn{0}'.format(conv_id), BN2d(filters))
                else:
                    model.add_module(
                        'conv{0}'.format(conv_id),
                        nn.Conv2d(prev_filters, filters, kernel_size, stride,
                                  pad))
                # activation是 具体激活函数
                if activation == 'leaky':
                    model.add_module('leaky{0}'.format(conv_id),
                                     nn.LeakyReLU(0.1, inplace=True))
                elif activation == 'relu':
                    model.add_module('relu{0}'.format(conv_id),
                                     nn.ReLU(inplace=True))
                elif activation == 'mish':
                    model.add_module('mish{0}'.format(conv_id), Mish())
                else:
                    print("convalution havn't activate {}".format(activation))

                prev_filters = filters
                out_filters.append(prev_filters)
                prev_stride = stride * prev_stride
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'maxpool':
                pool_size = int(block['size'])
                stride = int(block['stride'])
                model = nn.MaxPool2d(kernel_size=pool_size,
                                     stride=stride,
                                     padding=pool_size // 2)
                out_filters.append(prev_filters)
                prev_stride = stride * prev_stride
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'avgpool':
                model = GlobalAvgPool2d()
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'softmax':
                model = nn.Softmax()
                out_strides.append(prev_stride)
                out_filters.append(prev_filters)
                models.append(model)
            elif block['type'] == 'cost':
                '''
                构建 损失函数
                '''
                if block['_type'] == 'sse':
                    model = nn.MSELoss(size_average=True)
                elif block['_type'] == 'L1':
                    model = nn.L1Loss(size_average=True)
                elif block['_type'] == 'smooth':
                    model = nn.SmoothL1Loss(size_average=True)
                out_filters.append(1)
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'reorg':
                '''
                ???
                '''
                stride = int(block['stride'])
                prev_filters = stride * stride * prev_filters
                out_filters.append(prev_filters)
                prev_stride = prev_stride * stride
                out_strides.append(prev_stride)
                models.append(Reorg(stride))
            elif block['type'] == 'upsample':
                '''
                上采样与rount搭配使用
                上采样将feature map变大,然后与 之前的较大feature map在深度上合并
                '''
                stride = int(block['stride'])
                out_filters.append(prev_filters)
                prev_stride = prev_stride // stride
                out_strides.append(prev_stride)
                # models.append(nn.Upsample(scale_factor=stride, mode='nearest'))
                models.append(Upsample(stride))
            elif block['type'] == 'route':
                '''
                route 指 按照列来合并tensor,即扩展深度
                '''
                layers = block['layers'].split(',')
                ind = len(models)
                layers = [
                    int(i) if int(i) > 0 else int(i) + ind for i in layers
                ]
                if len(layers) == 1:
                    prev_filters = out_filters[layers[0]]
                    prev_stride = out_strides[layers[0]]
                elif len(layers) == 2:
                    assert (layers[0] == ind - 1)
                    prev_filters = out_filters[layers[0]] + out_filters[
                        layers[1]]
                    prev_stride = out_strides[layers[0]]
                elif len(layers) == 4:
                    assert (layers[0] == ind - 1)
                    prev_filters = out_filters[layers[0]] + out_filters[layers[1]] + out_filters[layers[2]] + \
                                   out_filters[layers[3]]
                    prev_stride = out_strides[layers[0]]
                else:
                    print("route error!!!")

                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(EmptyModule())
            elif block['type'] == 'shortcut':
                '''
                shortcut 指  残差结构,卷积的跨层连接,即 将不同两层输出(即输出+残差块)逐元素相加 为 最后结果
                '''
                ind = len(models)
                prev_filters = out_filters[ind - 1]
                out_filters.append(prev_filters)
                prev_stride = out_strides[ind - 1]
                out_strides.append(prev_stride)
                models.append(EmptyModule())
            elif block['type'] == 'connected':
                filters = int(block['output'])
                if block['activation'] == 'linear':
                    model = nn.Linear(prev_filters, filters)
                elif block['activation'] == 'leaky':
                    model = nn.Sequential(nn.Linear(prev_filters, filters),
                                          nn.LeakyReLU(0.1, inplace=True))
                elif block['activation'] == 'relu':
                    model = nn.Sequential(nn.Linear(prev_filters, filters),
                                          nn.ReLU(inplace=True))
                prev_filters = filters
                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(model)
            elif block['type'] == 'region':
                loss = RegionLoss()
                anchors = block['anchors'].split(',')
                loss.anchors = [float(i) for i in anchors]
                loss.num_classes = int(block['classes'])
                loss.num_anchors = int(block['num'])
                loss.anchor_step = len(loss.anchors) // loss.num_anchors
                loss.object_scale = float(block['object_scale'])
                loss.noobject_scale = float(block['noobject_scale'])
                loss.class_scale = float(block['class_scale'])
                loss.coord_scale = float(block['coord_scale'])
                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(loss)
            elif block['type'] == 'yolo':
                yolo_layer = YoloLayer()
                anchors = block['anchors'].split(',')
                anchor_mask = block['mask'].split(',')
                yolo_layer.anchor_mask = [int(i) for i in anchor_mask]
                yolo_layer.anchors = [float(i) for i in anchors]
                yolo_layer.num_classes = int(block['classes'])
                yolo_layer.num_anchors = int(block['num'])
                yolo_layer.anchor_step = len(
                    yolo_layer.anchors) // yolo_layer.num_anchors
                yolo_layer.stride = prev_stride
                # yolo_layer.object_scale = float(block['object_scale'])
                # yolo_layer.noobject_scale = float(block['noobject_scale'])
                # yolo_layer.class_scale = float(block['class_scale'])
                # yolo_layer.coord_scale = float(block['coord_scale'])
                out_filters.append(prev_filters)
                out_strides.append(prev_stride)
                models.append(yolo_layer)
            else:
                print('unknown type %s' % (block['type']))

        return models