) print(opt) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) if opt.gpu: torch.cuda.manual_seed_all(opt.manualSeed) model = locate("models.%s" % opt.model)(opt) if opt.load: model.load(opt.load) if opt.gpu: model.gpu() print("n parameters: %d" % sum([m.numel() for m in model.parameters()])) viz = utils.Viz(opt) def process_batch(batch, loss, i, k, set_, t0): """Optimization step. batch = [input, target]: contains data for optim step [input, target] loss: dict containing statistics about optimization i: epoch k: index of the current batch set_: type of batch (\"train\" or \"dev\") t0: time of the beginning of epoch """ nbatch = vars(opt)["nbatch_" + set_] res = model.step(batch, set_)
opt = json.loads(data[0]) opt['p_red'] = 0 opt['mask_object'] = opt_test.mask_object print(opt) opt = utils.to_namespace(opt) opt.bsz = opt.m opt.count = opt_test.count model = locate('models.%s' %opt.model)(opt, test=True) model.load(opt_test.load) if opt_test.gpu: model.gpu() if opt_test.eval: model.eval() else: print('WARNING: no call to eval()') viz = utils.Viz(opt_test) viz_output = utils.Viz(opt_test) else: assert opt_test.load_scores def process_batch(batch, j, t0): """Compute score for every frames in a video (which is also a batch). batch = [input, target]: all frames in the video j: index of the video t0: time when the test started """ nbatch = vars(opt)['nbatch_test'] frame_scores = np.zeros((opt.m, 4)) d3, d4 = batch[0].size(3), batch[0].size(4) for i in range(opt.bsz):