コード例 #1
0
    def train(self,total_loss, lr, global_step):
       # all of them are tensor
       #total_sample = 274 yike: ok to comment out?
       #num_batches_per_epoch = 274/1 yike: ok to comment out?

       loss_averages_op = _add_loss_summaries(total_loss)
       # Compute gradients.
       with tf.control_dependencies([loss_averages_op]):
         #print('try...')
         opt = tf.train.AdamOptimizer(lr)
         print('toto_loss_shape: '+str(total_loss))
         opt.compute_gradients(total_loss)
         grads = opt.compute_gradients(total_loss)
         #print(grads)
         apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

         # Add histograms for trainable variables.
         for var in tf.trainable_variables():
           tf.summary.histogram(var.op.name, var)

         # Add histograms for gradients.
         for grad, var in grads:
           if grad is not None:
             tf.summary.histogram(var.op.name + '/gradients', grad)

         # Track the moving averages of all trainable variables.
         variable_averages = tf.train.ExponentialMovingAverage(Model.MOVING_AVERAGE_DECAY, global_step)
         variables_averages_op = variable_averages.apply(tf.trainable_variables())

         with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
           train_op = tf.no_op(name='train')

       return train_op
コード例 #2
0
def train_batch(total_loss, global_step, optimizer, learning_rate, moving_average_decay,
          update_gradient_vars):
    loss_averages_op = utils._add_loss_summaries(total_loss)

    #计算梯度
    with tf.control_dependencies([loss_averages_op]):
        if optimizer == 'ADAGRAD':
            opt = tf.train.AdagradOptimizer(learning_rate)
        elif optimizer == 'ADADELTA':
            opt = tf.train.AdadeltaOptimizer(learning_rate,rho=0.9,epsilon=1e-6)
        elif optimizer == 'ADAM':
            opt = tf.train.AdamOptimizer(learning_rate,beta1=0.9,beta2=0.999,epsilon=0.1)
        elif optimizer == 'RMSPROP':
            opt = tf.train.RMSPropOptimizer(learning_rate,decay=0.9,momentum=0.9,epsilon=1.0)
        elif optimizer == 'MOM':
            opt = tf.train.MomentumOptimizer(learning_rate,0.9,use_nesterov=True)
        else:
            raise ValueError('Invalid optimization algorithm')

        grads = opt.compute_gradients(total_loss,update_gradient_vars)

    apply_gradient_op = opt.apply_gradients(grads,global_step=global_step)

    variable_averages = tf.train.ExponentialMovingAverage(moving_average_decay,global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    with tf.control_dependencies([apply_gradient_op,variables_averages_op]):
        train_op = tf.no_op(name='train')
    return train_op
コード例 #3
0
def captcha_train(total_loss, global_step):
    """
    Train captcha model.

    Create an optimizer and apply to all trainable variables. Add moving
    average for all trainable variables.

    Args:
        total_loss: Total loss from loss().
        global_step: Integer Variable counting the number of training steps
          processed.
    Returns:
        train_op: op for training.
    """
    # Variables that affect learning rate.
    num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
    decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(
        INITIAL_LEARNING_RATE,
        global_step,
        decay_steps,
        LEARNING_RATE_DECAY_FACTOR,
        staircase=True
    )
    tf.scalar_summary('learning_rate', lr)

    # Generate moving averages of all losses and associated summaries.
    loss_averages_op = _add_loss_summaries(total_loss)

    # Compute gradients.
    with tf.control_dependencies([loss_averages_op]):
        opt = tf.train.AdamOptimizer(lr)
        grads = opt.compute_gradients(total_loss)


    # Apply gradients.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
        tf.histogram_summary(var.op.name, var)

    # Add histograms for gradients.
    for grad, var in grads:
        if grad:
            tf.histogram_summary(var.op.name + '/gradients', grad)

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    variables_to_average = list(set(tf.trainable_variables() + filter(lambda v: "_mean" in v.name or "_variance" in v.name, tf.all_variables())))
    variables_averages_op = variable_averages.apply(variables_to_average)

    with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
        train_op = tf.no_op(name='train')

    return train_op
コード例 #4
0
def captcha_train(total_loss, global_step):
    """
    Train captcha model.

    Create an optimizer and apply to all trainable variables. Add moving
    average for all trainable variables.

    Args:
        total_loss: Total loss from loss().
        global_step: Integer Variable counting the number of training steps
          processed.
    Returns:
        train_op: op for training.
    """
    # Variables that affect learning rate.
    num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
    decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                    global_step,
                                    decay_steps,
                                    LEARNING_RATE_DECAY_FACTOR,
                                    staircase=True)
    tf.scalar_summary('learning_rate', lr)

    # Generate moving averages of all losses and associated summaries.
    loss_averages_op = _add_loss_summaries(total_loss)

    # Compute gradients.
    with tf.control_dependencies([loss_averages_op]):
        opt = tf.train.AdamOptimizer(lr)
        grads = opt.compute_gradients(total_loss)

    # Apply gradients.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
        tf.histogram_summary(var.op.name, var)

    # Add histograms for gradients.
    for grad, var in grads:
        if grad:
            tf.histogram_summary(var.op.name + '/gradients', grad)

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    variables_to_average = list(
        set(tf.trainable_variables() +
            filter(lambda v: "_mean" in v.name or "_variance" in v.name,
                   tf.all_variables())))
    variables_averages_op = variable_averages.apply(variables_to_average)

    with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
        train_op = tf.no_op(name='train')

    return train_op
コード例 #5
0
ファイル: trainer.py プロジェクト: wgrathwohl/Spaghetti-DQL
    def __init__(
        self, 
        q_values, 
        im_shape, num_channels, 
        batch_size,
        actions, train_dir,
        optimizer,
        decay_steps, initial_learning_rate, learning_rate_decay_factor=.1,
        checkpoint_path=None):
        """
        checkpoint_path: path to model checkpoint file
        logits is a function taking a tensor -> float array
        logits must take a single tensor argument
        ind_to_label is object such that ind_to_label[ind] = label
        """
        self.im_shape = im_shape
        self.num_channels = num_channels
        self.batch_size = batch_size
        self.train_dir = train_dir
        self.g = tf.Graph()
        with self.g.as_default():
            self.sess = tf.Session()                

            # variables to represent images, q values, expected q_values, and action inds
            self.images_placeholder = tf.placeholder("float", shape=[None, im_shape[0], im_shape[1], num_channels])
            self.images = self.images_placeholder #preprocess_images(self.images_placeholder)

            # TODO APPLY THIS NORMALIZATION ACROSS THE BATCH
            self.q_values = q_values(self.images, num_channels, len(actions))
            # TODO FIGURE OUT HOW TO REUSE THE VARIABLES BETWEEN THESE TWO OUTPUTS

            self.target_values = tf.placeholder("float", shape=[None, len(actions)])
            self.target_inds = tf.placeholder("float", shape=[None, len(actions)])

            # generate the loss and training up
            self.q_learning_loss = losses.q_learning_loss(self.q_values, self.target_values, self.target_inds, "q_loss")
            tf.add_to_collection('losses', self.q_learning_loss)
            self.loss = tf.add_n(tf.get_collection('losses'), name='total_loss')

            loss_averages_op = _add_loss_summaries(self.loss)

            self.global_step = tf.Variable(0, trainable=False)

            # Decay the learning rate exponentially based on the number of steps.
            lr = tf.train.exponential_decay(
                INITIAL_LEARNING_RATE,
                self.global_step,
                decay_steps,
                learning_rate_decay_factor,
                staircase=True
            )
            tf.scalar_summary('learning_rate', lr)

            # Compute gradients.
            with tf.control_dependencies([loss_averages_op]):
                opt = optimizer(lr) # tf.train.AdamOptimizer(lr)
                grads = opt.compute_gradients(self.loss)

            # Apply gradients.
            self.apply_gradient_op = opt.apply_gradients(grads, global_step=self.global_step)

            # Add histograms for trainable variables.
            for var in tf.trainable_variables():
                tf.histogram_summary(var.op.name, var)

            # Add histograms for gradients.
            for grad, var in grads:
                if grad:
                    tf.histogram_summary(var.op.name + '/gradients', grad)

            with tf.control_dependencies([self.apply_gradient_op]):
                self.train_op = tf.no_op(name='train')


            # Build the summary operation based on the TF collection of Summaries.
            self.summary_op = tf.merge_all_summaries()
            
            self.saver = tf.train.Saver(tf.all_variables())
            self.actions = actions

            # Build an initialization operation to run below.
            init = tf.initialize_all_variables()

            # Start running operations on the Graph.
            self.sess.run(init)

            self.summary_writer = tf.train.SummaryWriter(train_dir,
                                                graph_def=self.sess.graph_def)

        if checkpoint_path is not None:
            # restore the model's parameters
            self.checkpoint_step = checkpoint_path.split('-')[-1]
            self.checkpoint_path = checkpoint_path
            self.saver.restore(self.sess, checkpoint_path)
コード例 #6
0
    def __init__(self,
                 q_values,
                 im_shape,
                 num_channels,
                 batch_size,
                 actions,
                 train_dir,
                 optimizer,
                 decay_steps,
                 initial_learning_rate,
                 learning_rate_decay_factor=.1,
                 checkpoint_path=None):
        """
        checkpoint_path: path to model checkpoint file
        logits is a function taking a tensor -> float array
        logits must take a single tensor argument
        ind_to_label is object such that ind_to_label[ind] = label
        """
        self.im_shape = im_shape
        self.num_channels = num_channels
        self.batch_size = batch_size
        self.train_dir = train_dir
        self.g = tf.Graph()
        with self.g.as_default():
            self.sess = tf.Session()

            # variables to represent images, q values, expected q_values, and action inds
            self.images_placeholder = tf.placeholder(
                "float", shape=[None, im_shape[0], im_shape[1], num_channels])
            self.images = self.images_placeholder  #preprocess_images(self.images_placeholder)

            # TODO APPLY THIS NORMALIZATION ACROSS THE BATCH
            self.q_values = q_values(self.images, num_channels, len(actions))
            # TODO FIGURE OUT HOW TO REUSE THE VARIABLES BETWEEN THESE TWO OUTPUTS

            self.target_values = tf.placeholder("float",
                                                shape=[None,
                                                       len(actions)])
            self.target_inds = tf.placeholder("float",
                                              shape=[None, len(actions)])

            # generate the loss and training up
            self.q_learning_loss = losses.q_learning_loss(
                self.q_values, self.target_values, self.target_inds, "q_loss")
            tf.add_to_collection('losses', self.q_learning_loss)
            self.loss = tf.add_n(tf.get_collection('losses'),
                                 name='total_loss')

            loss_averages_op = _add_loss_summaries(self.loss)

            self.global_step = tf.Variable(0, trainable=False)

            # Decay the learning rate exponentially based on the number of steps.
            lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                            self.global_step,
                                            decay_steps,
                                            learning_rate_decay_factor,
                                            staircase=True)
            tf.scalar_summary('learning_rate', lr)

            # Compute gradients.
            with tf.control_dependencies([loss_averages_op]):
                opt = optimizer(lr)  # tf.train.AdamOptimizer(lr)
                grads = opt.compute_gradients(self.loss)

            # Apply gradients.
            self.apply_gradient_op = opt.apply_gradients(
                grads, global_step=self.global_step)

            # Add histograms for trainable variables.
            for var in tf.trainable_variables():
                tf.histogram_summary(var.op.name, var)

            # Add histograms for gradients.
            for grad, var in grads:
                if grad:
                    tf.histogram_summary(var.op.name + '/gradients', grad)

            with tf.control_dependencies([self.apply_gradient_op]):
                self.train_op = tf.no_op(name='train')

            # Build the summary operation based on the TF collection of Summaries.
            self.summary_op = tf.merge_all_summaries()

            self.saver = tf.train.Saver(tf.all_variables())
            self.actions = actions

            # Build an initialization operation to run below.
            init = tf.initialize_all_variables()

            # Start running operations on the Graph.
            self.sess.run(init)

            self.summary_writer = tf.train.SummaryWriter(
                train_dir, graph_def=self.sess.graph_def)

        if checkpoint_path is not None:
            # restore the model's parameters
            self.checkpoint_step = checkpoint_path.split('-')[-1]
            self.checkpoint_path = checkpoint_path
            self.saver.restore(self.sess, checkpoint_path)