コード例 #1
0
ファイル: utilsp.py プロジェクト: hodsonjames/stale-news
def abnormalVolatilityDateParallel(firm, date, pdatabase, printWarnings=True):
    """
    PARALLEL implementation IS faster for representative workloads
    Population standard deviation of abnormal returns for 20 business days prior (ending on and including date given)
    Relies on naming of pdatabase (crsp)
    Return -1 if dates not compatible or if no data available
    Returns FLOAT
    """
    if (firm, date) in pdatabase.abnvolat:
        return pdatabase.abnvolat[(firm, date)]
    if not pdatabase.dates:
        pdatabase.recordDates("date",
                              printWarnings)  # "date" is a col name in crsp
    if (int(date) not in pdatabase.dates
        ) or (pdatabase.dates.index(int(date)) - 19) < 0:
        if printWarnings:
            print("DATE NOT COMPATIBLE: " + date)
        return -1
    dateInd = pdatabase.dates.index(int(date))
    dateLess19 = dateInd - 19
    abnRets = []
    # if we have saved values sequential is likely to be faster
    if (firm, str(pdatabase.dates[dateLess19])) in pdatabase.abnret:
        for i in range(dateInd - dateLess19 + 1):
            abnRet = u.abnormalReturnDate(firm,
                                          str(pdatabase.dates[dateLess19 + i]),
                                          pdatabase, printWarnings)
        if abnRet == -1:
            if printWarnings:
                print("DATE NOT COMPATIBLE: " + date)
            return -1
        abnRets.append(abnRet)
    else:
        # set up for parallel abnormalReturnDate computation
        ard_queue = queue.Queue()  # thread safe
        thread_list = []
        for i in range(dateInd - dateLess19 + 1):
            thread = threading.Thread(
                target=lambda q, arg1, arg2, arg3, arg4: q.put(
                    u.abnormalReturnDate(arg1, arg2, arg3, arg4)),
                args=(ard_queue, firm, str(pdatabase.dates[dateLess19 + i]),
                      pdatabase, printWarnings))
            thread.start()
            thread_list.append(thread)
        for t in thread_list:
            t.join()
        while not ard_queue.empty():
            abnRet = ard_queue.get()
            if abnRet == -1:
                if printWarnings:
                    print("DATE NOT COMPATIBLE: " + date)
                return -1
            abnRets.append(abnRet)
    volat = np.std(abnRets)
    pdatabase.abnvolat[(firm, date)] = volat
    return volat
コード例 #2
0
ファイル: utilsp.py プロジェクト: hodsonjames/stale-news
def abnormalReturnParallel(firm,
                           dateStart,
                           dateEnd,
                           pdatabase,
                           printWarnings=True):
    """
    PARALLEL implementation IS faster for representative workloads
    Cumulative abnormal returns for firm over [dateStart, dateEnd]
    Uses decimal representation
    Relies on naming of pdatabase (crsp)
    Slow to reject very large and plausible invalid date ranges (should not occur in practice)
    Return -1 if dates not compatible or if no data available
    Returns FLOAT
    """
    if not pdatabase.dates:
        pdatabase.recordDates("date",
                              printWarnings)  # "date" is a col name in crsp
    if (int(dateStart) not in pdatabase.dates) or (
            int(dateEnd) not in pdatabase.dates) or (dateStart > dateEnd):
        if printWarnings:
            print("DATE NOT COMPATIBLE: " + dateStart + ", " + dateEnd)
        return -1
    dateStartInd = pdatabase.dates.index(int(dateStart))
    dateEndInd = pdatabase.dates.index(int(dateEnd))
    sumAbRet = 0.0
    # set up for parallel abnormalReturnDate computations
    ard_queue = queue.Queue()  # thread safe
    thread_list = []
    for i in range(dateEndInd - dateStartInd + 1):
        thread = threading.Thread(
            target=lambda q, arg1, arg2, arg3, arg4: q.put(
                u.abnormalReturnDate(arg1, arg2, arg3, arg4)),
            args=(ard_queue, firm, str(pdatabase.dates[dateStartInd + i]),
                  pdatabase, printWarnings))
        thread.start()
        thread_list.append(thread)
    for t in thread_list:
        t.join()
    while not ard_queue.empty():
        aretdate = ard_queue.get()
        if aretdate == -1:
            if printWarnings:
                print("DATE NOT COMPATIBLE: " + dateStart + ", " + dateEnd)
            return -1
        sumAbRet += aretdate
    return sumAbRet
コード例 #3
0
def famaMacBethRegression12(dates, firms, mdatabase, pdatabase1, pdatabase2,
                            t1, t2):
    """
    Average coefficients for daily cross-sectional regression over dates given
    dates: list of days in order from starting date to ending date, each date represents a date t used for computation
    firms: list of tickers of interest
    mdatabase: database of news measures
    pdatabase1: crsp data frame
    pdatabase2: compustat data frame
    t1, t2: used for AbnRet date range [t+t1, t+t2] where t is current reference day
    Returns tuple (dictionary mapping coefficients to values, dictionary mapping coefficients to their standard errors)
    """
    # append t2 additional days at the end for last few dependent variable queries
    if not pdatabase1.dates:
        pdatabase1.recordDates("date", False)  # "date" is a col name in crsp
    extra_day_start_index = pdatabase1.dates.index(int(
        dates[len(dates) - 1])) + 1
    for i in range(t2):
        dates.append(str(pdatabase1.dates[extra_day_start_index + i]))
    # running sum of coefficients as cross-sectional regressions are computed
    coefficients = {
        'a': 0,
        'b1': 0,
        'b2': 0,
        'b3': 0,
        's1': 0,
        's2': 0,
        'g1': 0,
        'g2': 0,
        'g3': 0,
        'g4': 0,
        'g5': 0,
        'g6': 0,
        'g7': 0,
        'g8': 0,
        'g9': 0
    }
    standard_errrors = {
        'ase': 0,
        'b1se': 0,
        'b2se': 0,
        'b3se': 0,
        's1se': 0,
        's2se': 0,
        'g1se': 0,
        'g2se': 0,
        'g3se': 0,
        'g4se': 0,
        'g5se': 0,
        'g6se': 0,
        'g7se': 0,
        'g8se': 0,
        'g9se': 0
    }
    # for average at end
    unused_dates = []
    # -t2 to account for extra days appended
    for i in range(len(dates) - t2):
        print("DAY T: " + dates[i])
        # compute daily cross-sectional regression
        lists = {
            'dependent': [],
            'AbnPcrOld': [],
            'AbnPcrOldXAbnRet': [],
            'AbnRet': [],
            'AbnPcrRecombinations': [],
            'AbnPcrRecombinationsXAbnRet': [],
            'Stories': [],
            'AbnStories': [],
            'Terms': [],
            'MCap': [],
            'BM': [],
            'AbnRetVect': [],
            'AbnVol': [],
            'AbnVolitility': [],
            'Illiq': []
        }
        for firm in firms:
            # skip firms where no data is available on date
            dependent_var = u.abnormalReturn(firm, dates[i + t1],
                                             dates[i + t2], pdatabase1, False)
            if dependent_var == -1:
                continue
            abn_pcr_old = u.abnormalPercentageOld(firm, dates[i], mdatabase)
            if abn_pcr_old == -1:
                continue
            abn_ret_next = u.abnormalReturnDate(firm, dates[i + 1], pdatabase1,
                                                False)
            if abn_ret_next == -1:
                continue
            abn_pcr_rec = u.abnormalPercentageRecombinations(
                firm, dates[i], mdatabase)
            if abn_pcr_rec == -1:
                continue
            x = u.generateXList(firm, dates[i], mdatabase, pdatabase1,
                                pdatabase2, False)
            if not x:
                continue
            lists['dependent'].append(dependent_var)
            lists['AbnPcrOld'].append(abn_pcr_old)
            lists['AbnPcrOldXAbnRet'].append(abn_pcr_old * abn_ret_next)
            lists['AbnRet'].append(abn_ret_next)
            lists['AbnPcrRecombinations'].append(abn_pcr_rec)
            lists['AbnPcrRecombinationsXAbnRet'].append(abn_pcr_rec *
                                                        abn_ret_next)
            lists['Stories'].append(x[0])
            lists['AbnStories'].append(x[1])
            lists['Terms'].append(x[2])
            lists['MCap'].append(x[3])
            lists['BM'].append(x[4])
            lists['AbnRetVect'].append(x[5])
            lists['AbnVol'].append(x[6])
            lists['AbnVolitility'].append(x[7])
            lists['Illiq'].append(x[8])
        # Invalid date
        if len(lists['dependent']) == 0:
            unused_dates.append(dates[i])
            continue
        # Create pandas data frame and run regression with statsmodels
        df = pd.DataFrame({
            "Y": lists['dependent'],
            "B1": lists['AbnPcrOld'],
            "B2": lists['AbnPcrOldXAbnRet'],
            "B3": lists['AbnRet'],
            "S1": lists['AbnPcrRecombinations'],
            "S2": lists['AbnPcrRecombinationsXAbnRet'],
            "G1": lists['Stories'],
            "G2": lists['AbnStories'],
            "G3": lists['Terms'],
            "G4": lists['MCap'],
            "G5": lists['BM'],
            "G6": lists['AbnRetVect'],
            "G7": lists['AbnVol'],
            "G8": lists['AbnVolitility'],
            "G9": lists['Illiq']
        })
        # 'HAC' for heteroscedasticity and autocorrelation, statsmodels uses Newey-West SE by default
        result = sm.ols(
            formula=
            "Y ~ B1 + B2 + B3 + S1 + S2 + G1 + G2 + G3 + G4 + G5 + G6 + G7 + G8 + G9",
            data=df).fit(cov_type='HAC', cov_kwds={'maxlags': 1})
        coefficients['a'] += result.params.Intercept
        coefficients['b1'] += result.params.B1
        coefficients['b2'] += result.params.B2
        coefficients['b3'] += result.params.B3
        coefficients['s1'] += result.params.S1
        coefficients['s2'] += result.params.S2
        coefficients['g1'] += result.params.G1
        coefficients['g2'] += result.params.G2
        coefficients['g3'] += result.params.G3
        coefficients['g4'] += result.params.G4
        coefficients['g5'] += result.params.G5
        coefficients['g6'] += result.params.G6
        coefficients['g7'] += result.params.G7
        coefficients['g8'] += result.params.G8
        coefficients['g9'] += result.params.G9
        standard_errrors['ase'] += result.bse.Intercept**2
        standard_errrors['b1se'] += result.bse.B1**2
        standard_errrors['b2se'] += result.bse.B2**2
        standard_errrors['b3se'] += result.bse.B3**2
        standard_errrors['s1se'] += result.bse.S1**2
        standard_errrors['s2se'] += result.bse.S2**2
        standard_errrors['g1se'] += result.bse.G1**2
        standard_errrors['g2se'] += result.bse.G2**2
        standard_errrors['g3se'] += result.bse.G3**2
        standard_errrors['g4se'] += result.bse.G4**2
        standard_errrors['g5se'] += result.bse.G5**2
        standard_errrors['g6se'] += result.bse.G6**2
        standard_errrors['g7se'] += result.bse.G7**2
        standard_errrors['g8se'] += result.bse.G8**2
        standard_errrors['g9se'] += result.bse.G9**2
    print(unused_dates)
    num_dates_used = len(dates) - t2 - len(
        unused_dates)  # -t2 to account for extra days appended
    print(num_dates_used)
    return {key: coefficients[key]/num_dates_used for key in coefficients}, \
           {key: (standard_errrors[key]/(num_dates_used**2))**0.5 for key in standard_errrors}
コード例 #4
0
def famaMacBethRegression8_9(dates,
                             firms,
                             mdatabase,
                             pdatabase1,
                             pdatabase2,
                             eight=True):
    """
    Average coefficients for daily cross-sectional regression over dates given
    dates: list of days in order from starting date to ending date, each date represents a date t used for computation
    firms: list of tickers of interest
    mdatabase: database of news measures
    pdatabase1: crsp data frame
    pdatabase2: compustat data frame
    eight: True computes equation 8, False computes equation 9
    Returns tuple (dictionary mapping coefficients to values, dictionary mapping coefficients to their standard errors)
    """
    # append one day at the end for very last t+1 query
    if not pdatabase1.dates:
        pdatabase1.recordDates("date", False)  # "date" is a col name in crsp
    extra_day_index = pdatabase1.dates.index(int(dates[len(dates) - 1])) + 1
    dates.append(str(pdatabase1.dates[extra_day_index]))
    # running sum of coefficients as cross-sectional regressions are computed
    coefficients = {
        'a': 0,
        'b': 0,
        'g1': 0,
        'g2': 0,
        'g3': 0,
        'g4': 0,
        'g5': 0,
        'g6': 0,
        'g7': 0,
        'g8': 0,
        'g9': 0
    }
    standard_errrors = {
        'ase': 0,
        'bse': 0,
        'g1se': 0,
        'g2se': 0,
        'g3se': 0,
        'g4se': 0,
        'g5se': 0,
        'g6se': 0,
        'g7se': 0,
        'g8se': 0,
        'g9se': 0
    }
    # for average at end
    unused_dates = []
    # -1 to account for extra day appended
    for i in range(len(dates) - 1):
        print("DAY T: " + dates[i])
        # compute daily cross-sectional regression
        lists = {
            'dependent': [],
            'AbnPctOld': [],
            'Stories': [],
            'AbnStories': [],
            'Terms': [],
            'MCap': [],
            'BM': [],
            'AbnRet': [],
            'AbnVol': [],
            'AbnVolitility': [],
            'Illiq': []
        }
        for firm in firms:
            # skip firms where no data is available on date
            if eight:
                dependent_var = u.abnormalReturnDate(firm, dates[i + 1],
                                                     pdatabase1, False)
                if dependent_var == -1:
                    continue
            else:
                dependent_var = u.abnormalVolDate(firm, dates[i + 1],
                                                  pdatabase1, False)
                if dependent_var == -1:
                    continue
            abn_pct_old = u.abnormalPercentageOld(firm, dates[i], mdatabase)
            if abn_pct_old == -1:
                continue
            x = u.generateXList(firm, dates[i], mdatabase, pdatabase1,
                                pdatabase2, False)
            if not x:
                continue
            if eight:
                lists['dependent'].append(abs(dependent_var))
            else:
                lists['dependent'].append(dependent_var)
            lists['AbnPctOld'].append(abn_pct_old)
            lists['Stories'].append(x[0])
            lists['AbnStories'].append(x[1])
            lists['Terms'].append(x[2])
            lists['MCap'].append(x[3])
            lists['BM'].append(x[4])
            lists['AbnRet'].append(x[5])
            lists['AbnVol'].append(x[6])
            lists['AbnVolitility'].append(x[7])
            lists['Illiq'].append(x[8])
        # Invalid date
        if len(lists['dependent']) == 0:
            unused_dates.append(dates[i])
            continue
        # Create pandas data frame and run regression with statsmodels
        df = pd.DataFrame({
            "Y": lists['dependent'],
            "B": lists['AbnPctOld'],
            "G1": lists['Stories'],
            "G2": lists['AbnStories'],
            "G3": lists['Terms'],
            "G4": lists['MCap'],
            "G5": lists['BM'],
            "G6": lists['AbnRet'],
            "G7": lists['AbnVol'],
            "G8": lists['AbnVolitility'],
            "G9": lists['Illiq']
        })
        # 'HAC' for heteroscedasticity and autocorrelation, statsmodels uses Newey-West SE by default
        result = sm.ols(
            formula="Y ~ B + G1 + G2 + G3 + G4 + G5 + G6 + G7 + G8 + G9",
            data=df).fit(cov_type='HAC', cov_kwds={'maxlags': 1})
        coefficients['a'] += result.params.Intercept
        coefficients['b'] += result.params.B
        coefficients['g1'] += result.params.G1
        coefficients['g2'] += result.params.G2
        coefficients['g3'] += result.params.G3
        coefficients['g4'] += result.params.G4
        coefficients['g5'] += result.params.G5
        coefficients['g6'] += result.params.G6
        coefficients['g7'] += result.params.G7
        coefficients['g8'] += result.params.G8
        coefficients['g9'] += result.params.G9
        standard_errrors['ase'] += result.bse.Intercept**2
        standard_errrors['bse'] += result.bse.B**2
        standard_errrors['g1se'] += result.bse.G1**2
        standard_errrors['g2se'] += result.bse.G2**2
        standard_errrors['g3se'] += result.bse.G3**2
        standard_errrors['g4se'] += result.bse.G4**2
        standard_errrors['g5se'] += result.bse.G5**2
        standard_errrors['g6se'] += result.bse.G6**2
        standard_errrors['g7se'] += result.bse.G7**2
        standard_errrors['g8se'] += result.bse.G8**2
        standard_errrors['g9se'] += result.bse.G9**2
    print(unused_dates)
    num_dates_used = len(dates) - 1 - len(
        unused_dates)  # -1 to account for extra day appended
    print(num_dates_used)
    return {key: coefficients[key]/num_dates_used for key in coefficients}, \
           {key: (standard_errrors[key]/(num_dates_used**2))**0.5 for key in standard_errrors}
コード例 #5
0
def generate_csv8_9(dates,
                    firms,
                    mdatabase,
                    pdatabase1,
                    pdatabase2,
                    eight=True):
    """
    Writes csv file for computation over dates given
    dates: list of days in order from starting date to ending date, each date represents a date t used for computation
    firms: list of tickers of interest
    mdatabase: database of news measures
    pdatabase1: crsp data frame
    pdatabase2: compustat data frame
    eight: True computes equation 8, False computes equation 9
    """
    # append one day at the end for very last t+1 query
    if not pdatabase1.dates:
        pdatabase1.recordDates("date", False)  # "date" is a col name in crsp
    extra_day_index = pdatabase1.dates.index(int(dates[len(dates) - 1])) + 1
    dates.append(str(pdatabase1.dates[extra_day_index]))
    # store data
    lists = {
        'dependent': [],
        'AbnPctOld': [],
        'Stories': [],
        'AbnStories': [],
        'Terms': [],
        'MCap': [],
        'BM': [],
        'AbnRet': [],
        'AbnVol': [],
        'AbnVolitility': [],
        'Illiq': [],
        'date': []
    }
    entries = 0
    # -1 to account for extra day appended
    for i in range(len(dates) - 1):
        print("DAY T: " + dates[i])
        for firm in firms:
            # skip firms where no data is available on date
            if eight:
                dependent_var = u.abnormalReturnDate(firm, dates[i + 1],
                                                     pdatabase1, False)
                if dependent_var == -1:
                    continue
            else:
                dependent_var = u.abnormalVolDate(firm, dates[i + 1],
                                                  pdatabase1, False)
                if dependent_var == -1:
                    continue
            abn_pct_old = u.abnormalPercentageOld(firm, dates[i], mdatabase)
            if abn_pct_old == -1:
                continue
            x = u.generateXList(firm, dates[i], mdatabase, pdatabase1,
                                pdatabase2, False)
            if not x:
                continue
            if eight:
                lists['dependent'].append(abs(dependent_var))
            else:
                lists['dependent'].append(dependent_var)
            lists['AbnPctOld'].append(abn_pct_old)
            lists['Stories'].append(x[0])
            lists['AbnStories'].append(x[1])
            lists['Terms'].append(x[2])
            lists['MCap'].append(x[3])
            lists['BM'].append(x[4])
            lists['AbnRet'].append(x[5])
            lists['AbnVol'].append(x[6])
            lists['AbnVolitility'].append(x[7])
            lists['Illiq'].append(x[8])
            lists['date'].append(dates[i])
            entries += 1
    # Create pandas data frame and to write out
    df = pd.DataFrame({
        "date": lists['date'],
        "dependent": lists['dependent'],
        "AbnPctOld": lists['AbnPctOld'],
        "Stories": lists['Stories'],
        "AbnStories": lists['AbnStories'],
        "Terms": lists['Terms'],
        "MCap": lists['MCap'],
        "BM": lists['BM'],
        "AbnRet": lists['AbnRet'],
        "AbnVol": lists['AbnVol'],
        "AbnVolitility": lists['AbnVolitility'],
        "Illiq": lists['Illiq']
    })
    print("ENTRIES: " + str(entries))
    print("COLUMNS: " + str(len(lists.keys())))
    if eight:
        # output fm_data_8_start_end.csv
        df.to_csv('fm_data_8_' + str(dates[0]) + "_" +
                  str(dates[len(dates) - 2]) + ".csv",
                  index=False)
    else:
        # output fm_data_9_start_end.csv
        df.to_csv('fm_data_9_' + str(dates[0]) + "_" +
                  str(dates[len(dates) - 2]) + ".csv",
                  index=False)
コード例 #6
0
def generate_csv12(dates, firms, mdatabase, pdatabase1, pdatabase2, t1, t2):
    """
    Writes csv file for computation over dates given
    dates: list of days in order from starting date to ending date, each date represents a date t used for computation
    firms: list of tickers of interest
    mdatabase: database of news measures
    pdatabase1: crsp data frame
    pdatabase2: compustat data frame
    t1, t2: used for AbnRet date range [t+t1, t+t2] where t is current reference day
    """
    # append t2 additional days at the end for last few dependent variable queries
    if not pdatabase1.dates:
        pdatabase1.recordDates("date", False)  # "date" is a col name in crsp
    extra_day_start_index = pdatabase1.dates.index(int(
        dates[len(dates) - 1])) + 1
    for i in range(t2):
        dates.append(str(pdatabase1.dates[extra_day_start_index + i]))
    # store data
    lists = {
        'dependent': [],
        'AbnPcrOld': [],
        'AbnPcrOldXAbnRet': [],
        'AbnRet': [],
        'AbnPcrRecombinations': [],
        'AbnPcrRecombinationsXAbnRet': [],
        'Stories': [],
        'AbnStories': [],
        'Terms': [],
        'MCap': [],
        'BM': [],
        'AbnRetVect': [],
        'AbnVol': [],
        'AbnVolitility': [],
        'Illiq': [],
        'date': []
    }
    entries = 0
    # -t2 to account for extra days appended
    for i in range(len(dates) - t2):
        print("DAY T: " + dates[i])
        for firm in firms:
            # skip firms where no data is available on date
            dependent_var = u.abnormalReturn(firm, dates[i + t1],
                                             dates[i + t2], pdatabase1, False)
            if dependent_var == -1:
                continue
            abn_pcr_old = u.abnormalPercentageOld(firm, dates[i], mdatabase)
            if abn_pcr_old == -1:
                continue
            abn_ret_next = u.abnormalReturnDate(firm, dates[i + 1], pdatabase1,
                                                False)
            if abn_ret_next == -1:
                continue
            abn_pcr_rec = u.abnormalPercentageRecombinations(
                firm, dates[i], mdatabase)
            if abn_pcr_rec == -1:
                continue
            x = u.generateXList(firm, dates[i], mdatabase, pdatabase1,
                                pdatabase2, False)
            if not x:
                continue
            lists['dependent'].append(dependent_var)
            lists['AbnPcrOld'].append(abn_pcr_old)
            lists['AbnPcrOldXAbnRet'].append(abn_pcr_old * abn_ret_next)
            lists['AbnRet'].append(abn_ret_next)
            lists['AbnPcrRecombinations'].append(abn_pcr_rec)
            lists['AbnPcrRecombinationsXAbnRet'].append(abn_pcr_rec *
                                                        abn_ret_next)
            lists['Stories'].append(x[0])
            lists['AbnStories'].append(x[1])
            lists['Terms'].append(x[2])
            lists['MCap'].append(x[3])
            lists['BM'].append(x[4])
            lists['AbnRetVect'].append(x[5])
            lists['AbnVol'].append(x[6])
            lists['AbnVolitility'].append(x[7])
            lists['Illiq'].append(x[8])
            lists['date'].append(dates[i])
            entries += 1
    # Create pandas data frame and to write out
    df = pd.DataFrame({
        "date":
        lists['date'],
        "dependent":
        lists['dependent'],
        "AbnPcrOld":
        lists['AbnPcrOld'],
        "AbnPcrOldXAbnRet":
        lists['AbnPcrOldXAbnRet'],
        "AbnRet":
        lists['AbnRet'],
        "AbnPcrRecombinations":
        lists['AbnPcrRecombinations'],
        "AbnPcrRecombinationsXAbnRet":
        lists['AbnPcrRecombinationsXAbnRet'],
        "Stories":
        lists['Stories'],
        "AbnStories":
        lists['AbnStories'],
        "Terms":
        lists['Terms'],
        "MCap":
        lists['MCap'],
        "BM":
        lists['BM'],
        "AbnRetVect":
        lists['AbnRetVect'],
        "AbnVol":
        lists['AbnVol'],
        "AbnVolitility":
        lists['AbnVolitility'],
        "Illiq":
        lists['Illiq']
    })
    print("ENTRIES: " + str(entries))
    print("COLUMNS: " + str(len(lists.keys())))
    # output fm_data_12_start_end_t1_t2.csv
    df.to_csv('fm_data_10_' + str(dates[0]) + "_" +
              str(dates[len(dates) - t2 - 1]) + "_" + str(t1) + "_" + str(t2) +
              ".csv",
              index=False)