コード例 #1
0
def run_sklearn_mds(n_components, n_clusters, seqfos, seed, reco_info=None, region=None, aligned=False, n_init=4, max_iter=300, eps=1e-3, n_jobs=-1, plotdir=None, debug=False):
    # NOTE set <n_components> to None to run plain kmeans, without mds TODO clean this up

    start = time.time()
    assert n_clusters is not None
    if 'sklearn' not in sys.modules:
        from sklearn import manifold  # these are both slow af to import, even on local ssd
        from sklearn.cluster import KMeans

    if len(set(sfo['name'] for sfo in seqfos)) != len(seqfos):
        raise Exception('duplicate sequence ids in <seqfos>')

    if not aligned:  # NOTE unlike the bios2mds version above, this modifies <seqfos>
        if debug:
            print 'align'
        seqfos = utils.align_many_seqs(seqfos)

    if debug:
        print '  distances'
    # translations = string.maketrans('ACGT-', '01234')
    # def convert(seq):
    #     return [int(c) for c in seq.translate(translations)]
    # converted_seqs = [convert(x['seq']) for x in seqfos]
    # similarities = scipy.spatial.distance.pdist(converted_seqs, 'hamming')
    # similarities = scipy.spatial.distance.squareform(similarities)
    similarities = scipy.spatial.distance.squareform([utils.hamming_fraction(seqfos[i]['seq'], seqfos[j]['seq']) for i in range(len(seqfos)) for j in range(i + 1, len(seqfos))])
    random_state = numpy.random.RandomState(seed=seed)

    pos = None
    if n_components is not None:
        if debug:
            print '  mds'
        mds = sys.modules['sklearn'].manifold.MDS(n_components=n_components, n_init=n_init, max_iter=max_iter, eps=eps, random_state=random_state, dissimilarity="precomputed", n_jobs=n_jobs)
        pos = mds.fit_transform(similarities)
        # pos = mds.fit(similarities).embedding_

    if debug:
        print '    kmeans clustering with %d clusters' % n_clusters
    kmeans = sys.modules['sklearn'].cluster.KMeans(n_clusters=n_clusters, random_state=random_state).fit(pos if pos is not None else similarities)
    pcvals = {seqfos[iseq]['name'] : pos[iseq] if pos is not None else None for iseq in range(len(seqfos))}
    labels = {seqfos[iseq]['name'] : kmeans.labels_[iseq] for iseq in range(len(seqfos))}
    partition = utils.group_seqs_by_value(pcvals.keys(), lambda q: labels[q])

    if plotdir is not None:
        utils.prep_dir(plotdir, wildlings=['*.svg'])
        if debug:
            print '    plot'
        plot_mds(n_components, pcvals, plotdir, 'mds', partition=partition)

        if reco_info is not None:
            labels = {uid : reco_info[uid][region + '_gene'] for uid in pcvals}
            plot_mds(n_components, pcvals, plotdir, 'true-genes', labels=labels)

    if debug:
        print '    kmeans time %.1f' % (time.time() - start)

    return partition
コード例 #2
0
def run_sklearn_mds(n_components, n_clusters, seqfos, seed, reco_info=None, region=None, aligned=False, n_init=4, max_iter=300, eps=1e-3, n_jobs=-1, plotdir=None):
    print '%s not testing this after moving these imports down here' % utils.color('red', 'hey')
    from sklearn import manifold  # these are both slow af to import, even on local ssd
    from sklearn.cluster import KMeans

    if len(set(sfo['name'] for sfo in seqfos)) != len(seqfos):
        raise Exception('duplicate sequence ids in <seqfos>')

    print 'align'
    if not aligned:  # NOTE unlike the bios2mds version above, this modifies <seqfos>
        seqfos = utils.align_many_seqs(seqfos)

    print '  distances'
    # translations = string.maketrans('ACGT-', '01234')
    # def convert(seq):
    #     return [int(c) for c in seq.translate(translations)]
    # converted_seqs = [convert(x['seq']) for x in seqfos]
    # similarities = scipy.spatial.distance.pdist(converted_seqs, 'hamming')
    # similarities = scipy.spatial.distance.squareform(similarities)
    similarities = scipy.spatial.distance.squareform([utils.hamming_fraction(seqfos[i]['seq'], seqfos[j]['seq']) for i in range(len(seqfos)) for j in range(i + 1, len(seqfos))])

    print '  mds'
    random_state = numpy.random.RandomState(seed=seed)
    mds = manifold.MDS(n_components=n_components, n_init=n_init, max_iter=max_iter, eps=eps, random_state=random_state, dissimilarity="precomputed", n_jobs=n_jobs)
    pos = mds.fit_transform(similarities)
    # pos = mds.fit(similarities).embedding_

    print '  kmeans'
    kmeans = KMeans(n_clusters=n_clusters, random_state=random_state).fit(pos)
    pcvals = {seqfos[iseq]['name'] : pos[iseq] for iseq in range(len(seqfos))}
    labels = {seqfos[iseq]['name'] : kmeans.labels_[iseq] for iseq in range(len(seqfos))}
    def keyfunc(q):  # should really integrate this with utils.collapse_naive_seqs()/utils.split_partition_with_criterion()
        return labels[q]
    partition = [list(group) for _, group in itertools.groupby(sorted(pcvals, key=keyfunc), key=keyfunc)]

    if plotdir is not None:
        utils.prep_dir(plotdir, wildlings=['*.svg'])
        print '  plot'
        plot_mds(n_components, pcvals, plotdir, 'mds', partition=partition)

        if reco_info is not None:
            labels = {uid : reco_info[uid][region + '_gene'] for uid in pcvals}
            plot_mds(n_components, pcvals, plotdir, 'true-genes', labels=labels)

    return partition
コード例 #3
0
def run_bios2mds(n_components, n_clusters, seqfos, base_workdir, seed, aligned=False, reco_info=None, region=None,
                 max_runs=100, max_iterations=1000, method='euclidean',
                 plotdir=None, plotname='mds', queries_to_include=None, color_scale_vals=None, labels=None, title=None, debug=False):
    workdir = base_workdir + '/mds'
    msafname = workdir + '/msa.fa'
    mdsfname = workdir + '/components.txt'
    clusterfname = workdir + '/clusters.txt'
    if not os.path.exists(workdir):
        os.makedirs(workdir)

    if len(set([sfo['seq'] for sfo in seqfos])) < len(seqfos):  # it'll just crash when it's running mds later, but this is faster
        raise Exception('duplicate sequences in seqfos')

    if aligned:  # NOTE unlike the sklearn version below, this doesn't modify <seqfos>
        with open(msafname, 'w') as fastafile:
            for sfo in seqfos:
                fastafile.write('>%s\n%s\n' % (sfo['name'], sfo['seq']))
    else:
        utils.align_many_seqs(seqfos, outfname=msafname)

    # build the R cmd file
    cmdlines = [
        'options(rgl.useNULL=TRUE)',
        'require(bios2mds, quietly=TRUE)',
        'set.seed(%d)' % seed,
        'human <- import.fasta("%s")' % msafname,
        'active <- mat.dif(human, human)',  # mat.dif or mat.dis?
    ]

    if n_components is not None:
        cmdlines += ['mmds_active <- mmds(active, pc=%d)' % n_components]
        cmdlines += ['capture.output(mmds_active$coord, file="%s")' % mdsfname]
    else:
        raise Exception('need to implement')

    if n_clusters is not None:
        cmdlines += [
            'kmeans.run1 <- kmeans.run(mmds_active$coord, nb.clus=%d, nb.run=%d, iter.max=%d, method="%s")' % (n_clusters, max_runs, max_iterations, method),
            # 'kmeans.run1$clusters',
            # 'kmeans.run1$elements',
            'options(width=10000)',
            'capture.output(kmeans.run1$clusters, file="%s")' % clusterfname,
            # sil.score(mat, nb.clus = c(2:13), nb.run = 100, iter.max = 1000,  # run for every possible number of clusters (?)
            #               method = "euclidean")
            # random.msa  # builds a random [...]
        ]

    rstart = time.time()
    try:
        utils.run_r(cmdlines, workdir)  #, print_time='kmeans')
    except subprocess.CalledProcessError as e:  # complex eigenvalues
        print e
        print '   mds failed on cluster'  # NOTE will still crash in read_kmeans_clusterfile(), but I'm not using that a.t.m.
        title = (title if title is not None else '') + ' mds failed'
    pcvals = read_component_file(mdsfname, n_components, seqfos)
    partition = read_kmeans_clusterfile(clusterfname, seqfos) if n_clusters is not None else None
    rstop = time.time()

    os.remove(msafname)
    os.rmdir(workdir)

    plotstart = time.time()
    if plotdir is not None:
        # utils.prep_dir(plotdir, wildlings=['*.svg'])
        plot_mds(n_components, pcvals, plotdir, plotname, partition=partition if n_clusters is not None else None, queries_to_include=queries_to_include, color_scale_vals=color_scale_vals, labels=labels, title=title)
        if reco_info is not None:
            labels = {uid : reco_info[uid][region + '_gene'] for uid in pcvals}
            plot_mds(n_components, pcvals, plotdir, 'true-genes', labels=labels, queries_to_include=queries_to_include, color_scale_vals=color_scale_vals, title=title)
    print '    %5.1f  %5.1f' % (rstop - rstart, time.time() - plotstart),

    return partition