def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) if cfg.task == "supervised": # fully supervised task train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set) // cfg.sess_per_batch labeled_session = train_session[:cfg.label_num] val_session = cfg.val_session val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Load models here ######################## sensors_emb_dim = 32 segment_emb_dim = 32 with tf.variable_scope("modality_core"): # load backbone model if cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) # for lstm has variable scope with tf.variable_scope("modality_sensors"): model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim) model_pairsim_sensors = networks.PDDM(n_input=sensors_emb_dim) input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8]) model_emb_sensors.forward(input_sensors_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_sensors"): var_list[v.op.name.replace("modality_sensors/", "")] = v restore_saver_sensors = tf.train.Saver(var_list) with tf.variable_scope("modality_segment"): model_emb_segment = networks.RTSN(n_seg=cfg.num_seg, emb_dim=segment_emb_dim, n_input=357) model_pairsim_segment = networks.PDDM(n_input=segment_emb_dim) input_segment_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 357]) model_emb_segment.forward(input_segment_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_segment"): var_list[v.op.name.replace("modality_segment/", "")] = v restore_saver_segment = tf.train.Saver(var_list) ############################# Forward Pass ############################# # Core branch if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # get the number of multimodal triplets (x3) mul_num_ph = tf.placeholder(tf.int32, shape=[]) margins_ph = tf.placeholder(tf.float32, shape=[None]) struct_num = tf.shape(margins_ph)[0] * 3 # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding[:(tf.shape(embedding)[0] - mul_num_ph)], [-1, 3, cfg.emb_dim]), 3, 1) anchor_hard, positive_hard, negative_hard = tf.unstack( tf.reshape(embedding[-mul_num_ph:-struct_num], [-1, 3, cfg.emb_dim]), 3, 1) anchor_struct, positive_struct, negative_struct = tf.unstack( tf.reshape(embedding[-struct_num:], [-1, 3, cfg.emb_dim]), 3, 1) # Sensors branch emb_sensors = model_emb_sensors.hidden A_sensors, B_sensors, C_sensors = tf.unstack( tf.reshape(emb_sensors, [-1, 3, sensors_emb_dim]), 3, 1) model_pairsim_sensors.forward(tf.stack([A_sensors, B_sensors], axis=1)) pddm_AB_sensors = model_pairsim_sensors.prob[:, 1] model_pairsim_sensors.forward(tf.stack([A_sensors, C_sensors], axis=1)) pddm_AC_sensors = model_pairsim_sensors.prob[:, 1] # Segment branch emb_segment = model_emb_segment.hidden A_segment, B_segment, C_segment = tf.unstack( tf.reshape(emb_segment, [-1, 3, segment_emb_dim]), 3, 1) model_pairsim_segment.forward(tf.stack([A_segment, B_segment], axis=1)) pddm_AB_segment = model_pairsim_segment.prob[:, 1] model_pairsim_segment.forward(tf.stack([A_segment, C_segment], axis=1)) pddm_AC_segment = model_pairsim_segment.prob[:, 1] # fuse prob from all modalities prob_AB = 0.5 * (pddm_AB_sensors + pddm_AB_segment) prob_AC = 0.5 * (pddm_AC_sensors + pddm_AC_segment) ############################# Calculate loss ############################# # triplet loss for labeled inputs metric_loss1 = networks.triplet_loss(anchor, positive, negative, cfg.alpha) # weighted triplet loss for multimodal inputs # if cfg.weighted: # metric_loss2, _ = networks.weighted_triplet_loss(anchor_hard, positive_hard, negative_hard, prob_AB, prob_AC, cfg.alpha) # else: # triplet loss for hard examples from multimodal data metric_loss2 = networks.triplet_loss(anchor_hard, positive_hard, negative_hard, cfg.alpha) # margin-based triplet loss for structure mining from multimodal data metric_loss3 = networks.triplet_loss(anchor_struct, positive_struct, negative_struct, margins_ph) # whether to apply joint optimization if cfg.no_joint: unimodal_var_list = [ v for v in tf.global_variables() if v.op.name.startswith("modality_core") ] train_var_list = unimodal_var_list else: multimodal_var_list = [ v for v in tf.global_variables() if not (v.op.name.startswith("modality_sensors/RTSN") or v.op.name.startswith("modality_segment/RTSN")) ] train_var_list = multimodal_var_list regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = tf.cond( tf.greater(mul_num_ph, 0), lambda: tf.cond( tf.equal(mul_num_ph, tf.shape(embedding)[0]), lambda: (metric_loss2 + metric_loss3 * 0.3) * cfg.lambda_multimodal + regularization_loss * cfg.lambda_l2, lambda: metric_loss1 + (metric_loss2 + metric_loss3 * 0.3) * cfg.lambda_multimodal + regularization_loss * cfg.lambda_l2), lambda: metric_loss1 + regularization_loss * cfg.lambda_l2) tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, train_var_list) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all( ) # not logging histogram of variables because it will cause problem when only unimodal_train_op is called summ_prob_AB = tf.summary.histogram('Prob_AB_histogram', prob_AB) summ_prob_AC = tf.summary.histogram('Prob_AC_histogram', prob_AC) # summ_weights = tf.summary.histogram('Weights_histogram', weights) ######################################################################### # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat3_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = multimodal_session_generator( feat_paths_ph, feat2_paths_ph, feat3_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[ model_emb.prepare_input, model_emb_sensors.prepare_input, model_emb_segment.prepare_input ]) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_feats2 = [] val_feats3 = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label( session[0], session[-1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id] * eve_batch.shape[0]) val_boundaries.extend(boundary) eve2_batch, _, _ = load_data_and_label( session[1], session[-1], model_emb_sensors.prepare_input_test) val_feats2.append(eve2_batch) eve3_batch, _, _ = load_data_and_label( session[2], session[-1], model_emb_segment.prepare_input_test) val_feats3.append(eve3_batch) val_feats = np.concatenate(val_feats, axis=0) val_feats2 = np.concatenate(val_feats2, axis=0) val_feats3 = np.concatenate(val_feats3, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( i, val_labels[i, 0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) print("Restoring sensors model: %s" % cfg.sensors_path) restore_saver_sensors.restore(sess, cfg.sensors_path) print("Restoring segment model: %s" % cfg.segment_path) restore_saver_segment.restore(sess, cfg.segment_path) ################## Training loop ################## # Initialize pairwise embedding distance for each class on validation set val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) dist_dict = {} for i in range(np.max(val_labels) + 1): temp_emb = val_embeddings[np.where(val_labels == i)[0]] dist_dict[i] = [ np.mean( utils.cdist(utils.all_diffs(temp_emb, temp_emb), metric=cfg.metric)) ] epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch)) feat_paths = [[p[0] for p in path] for path in paths] feat2_paths = [[p[1] for p in path] for path in paths] feat3_paths = [[p[2] for p in path] for path in paths] label_paths = [[p[-1] for p in path] for path in paths] sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, feat2_paths_ph: feat2_paths, feat3_paths_ph: feat3_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: ##################### Data loading ######################## start_time = time.time() eve, eve_sensors, eve_segment, lab, batch_sess = sess.run( next_train) # for memory concern, 1000 events are used in maximum if eve.shape[0] > cfg.event_per_batch: idx = np.random.permutation( eve.shape[0])[:cfg.event_per_batch] eve = eve[idx] eve_sensors = eve_sensors[idx] eve_segment = eve_segment[idx] lab = lab[idx] batch_sess = batch_sess[idx] load_time = time.time() - start_time ##################### Triplet selection ##################### start_time = time.time() # Get the embeddings of all events eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip( range(0, eve.shape[0], cfg.batch_size), range(cfg.batch_size, eve.shape[0] + cfg.batch_size, cfg.batch_size)): end = min(end, eve.shape[0]) emb = sess.run(embedding, feed_dict={ input_ph: eve[start:end], dropout_ph: 1.0 }) eve_embedding[start:end] = np.copy(emb) # sample triplets within sampled sessions all_diff = utils.all_diffs(eve_embedding, eve_embedding) triplet_selected, active_count = utils.select_triplets_facenet( lab, utils.cdist(all_diff, metric=cfg.metric), cfg.triplet_per_batch, cfg.alpha) hard_count = 0 struct_count = 0 if epoch >= cfg.multimodal_epochs: # Get the similarity of all events sim_prob = np.zeros((eve.shape[0], eve.shape[0]), dtype='float32') * np.nan comb = list( itertools.combinations(range(eve.shape[0]), 2)) for start, end in zip( range(0, len(comb), cfg.batch_size), range(cfg.batch_size, len(comb) + cfg.batch_size, cfg.batch_size)): end = min(end, len(comb)) comb_idx = [] for c in comb[start:end]: comb_idx.extend([c[0], c[1], c[1]]) sim = sess.run(prob_AB, feed_dict={ input_sensors_ph: eve_sensors[comb_idx], input_segment_ph: eve_segment[comb_idx], dropout_ph: 1.0 }) for i in range(sim.shape[0]): sim_prob[comb[start + i][0], comb[start + i][1]] = sim[i] sim_prob[comb[start + i][1], comb[start + i][0]] = sim[i] # sample triplets from similarity prediction # maximum number not exceed the cfg.triplet_per_batch triplet_input_idx, margins, triplet_count, hard_count, struct_count = select_triplets_mul( triplet_selected, lab, sim_prob, dist_dict, cfg.triplet_per_batch, 3, 0.8, 0.2) # add up all multimodal triplets multimodal_count = hard_count + struct_count sensors_input = eve_sensors[ triplet_input_idx[-(3 * multimodal_count):]] segment_input = eve_segment[ triplet_input_idx[-(3 * multimodal_count):]] print(triplet_count, hard_count, struct_count) triplet_input = eve[triplet_input_idx] select_time = time.time() - start_time if len(triplet_input.shape) > 5: # debugging pdb.set_trace() ##################### Start training ######################## # supervised initialization if multimodal_count == 0: if triplet_count == 0: continue err, metric_err1, _, step, summ = sess.run( [ total_loss, metric_loss1, train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, dropout_ph: cfg.keep_prob, mul_num_ph: 0, lr_ph: learning_rate }) metric_err2 = 0 metric_err3 = 0 else: err, metric_err1, metric_err2, metric_err3, _, step, summ, s_AB, s_AC = sess.run( [ total_loss, metric_loss1, metric_loss2, metric_loss3, train_op, global_step, summary_op, summ_prob_AB, summ_prob_AC ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, input_segment_ph: segment_input, mul_num_ph: multimodal_count * 3, margins_ph: margins, dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) summary_writer.add_summary(s_AB, step) summary_writer.add_summary(s_AC, step) print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tLoad time: %.3f\tSelect time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_count+multimodal_count, load_time, select_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value(tag="triplet_count", simple_value=triplet_count), tf.Summary.Value(tag="hard_count", simple_value=hard_count), tf.Summary.Value(tag="struct_count", simple_value=struct_count), tf.Summary.Value(tag="metric_loss1", simple_value=metric_err1), tf.Summary.Value(tag="metric_loss3", simple_value=metric_err3), tf.Summary.Value(tag="metric_loss2", simple_value=metric_err2) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) mAP, mPrec, recall = utils.evaluate_simple( val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation Recall@1", simple_value=recall), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch + 1, mAP, mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # update dist_dict if (epoch + 1) == 50 or (epoch + 1) % 200 == 0: for i in dist_dict.keys(): temp_emb = val_embeddings[np.where(val_labels == i)[0]] dist_dict[i].append( np.mean( utils.cdist(utils.all_diffs( temp_emb, temp_emb), metric=cfg.metric))) pickle.dump( dist_dict, open(os.path.join(result_dir, 'dist_dict.pkl'), 'wb')) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) if cfg.task == "supervised": # fully supervised task train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set) // cfg.sess_per_batch labeled_session = train_session[:cfg.label_num] val_session = cfg.val_session val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Load models here ######################## sensors_emb_dim = 32 segment_emb_dim = 32 with tf.variable_scope("modality_core"): # load backbone model if cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError input_ph = tf.placeholder( tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) # for lstm has variable scope with tf.variable_scope("sensors"): model_output_sensors = networks.OutputLayer( n_input=cfg.emb_dim, n_output=sensors_emb_dim) with tf.variable_scope("segment"): model_output_segment = networks.OutputLayer( n_input=cfg.emb_dim, n_output=segment_emb_dim) lambda_mul_ph = tf.placeholder(tf.float32, shape=[]) with tf.variable_scope("modality_sensors"): model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim) input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8]) model_emb_sensors.forward(input_sensors_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_sensors"): var_list[v.op.name.replace("modality_sensors/", "")] = v restore_saver_sensors = tf.train.Saver(var_list) with tf.variable_scope("modality_segment"): model_emb_segment = networks.RTSN(n_seg=cfg.num_seg, emb_dim=segment_emb_dim, n_input=357) input_segment_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 357]) model_emb_segment.forward(input_segment_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_segment"): var_list[v.op.name.replace("modality_segment/", "")] = v restore_saver_segment = tf.train.Saver(var_list) ############################# Forward Pass ############################# if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) embedding_sensors = tf.nn.l2_normalize(model_emb_sensors.hidden, axis=-1, epsilon=1e-10) embedding_segment = tf.nn.l2_normalize(model_emb_segment.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden embedding_sensors = model_emb_sensors.hidden embedding_segment = model_emb_segment.hidden # get the number of unsupervised training unsup_num = tf.shape(input_sensors_ph)[0] # variable for visualizing the embeddings emb_var = tf.Variable(tf.zeros([1116, cfg.emb_dim], dtype=tf.float32), name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding[:-unsup_num], [-1, 3, cfg.emb_dim]), 3, 1) metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) model_output_sensors.forward(tf.nn.relu(embedding[-unsup_num:]), dropout_ph) logits_sensors = model_output_sensors.logits model_output_segment.forward(tf.nn.relu(embedding[-unsup_num:]), dropout_ph) logits_segment = model_output_segment.logits # MSE loss MSE_loss_sensors = tf.losses.mean_squared_error( embedding_sensors, logits_sensors) / sensors_emb_dim MSE_loss_segment = tf.losses.mean_squared_error( embedding_sensors, logits_segment) / segment_emb_dim MSE_loss = MSE_loss_sensors + MSE_loss_segment regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = tf.cond( tf.equal(unsup_num, tf.shape(embedding)[0]), lambda: MSE_loss * lambda_mul_ph + regularization_loss * cfg.lambda_l2, lambda: metric_loss + MSE_loss * lambda_mul_ph + regularization_loss * cfg.lambda_l2) tf.summary.scalar('learning_rate', lr_ph) # only train the core branch train_var_list = [ v for v in tf.global_variables() if v.op.name.startswith("modality_core") ] train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, train_var_list) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all() ######################################################################### # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat3_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = multimodal_session_generator( feat_paths_ph, feat2_paths_ph, feat3_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[ model_emb.prepare_input, model_emb_sensors.prepare_input, model_emb_segment.prepare_input ]) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_feats2 = [] val_feats3 = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label( session[0], session[-1], model_emb.prepare_input_test ) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id] * eve_batch.shape[0]) val_boundaries.extend(boundary) eve2_batch, _, _ = load_data_and_label( session[1], session[-1], model_emb_sensors.prepare_input_test) val_feats2.append(eve2_batch) eve3_batch, _, _ = load_data_and_label( session[2], session[-1], model_emb_segment.prepare_input_test) val_feats3.append(eve3_batch) val_feats = np.concatenate(val_feats, axis=0) val_feats2 = np.concatenate(val_feats2, axis=0) val_feats3 = np.concatenate(val_feats3, axis=0) val_labels = np.concatenate(val_labels, axis=0) print("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( i, val_labels[i, 0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) print("Restoring sensors model: %s" % cfg.sensors_path) restore_saver_sensors.restore(sess, cfg.sensors_path) print("Restoring segment model: %s" % cfg.segment_path) restore_saver_segment.restore(sess, cfg.segment_path) # load pretrain model, if needed if cfg.model_path: print("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs - 1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch)) feat_paths = [[p[0] for p in path] for path in paths] feat2_paths = [[p[1] for p in path] for path in paths] feat3_paths = [[p[2] for p in path] for path in paths] label_paths = [[p[-1] for p in path] for path in paths] sess.run(train_sess_iterator.initializer, feed_dict={ feat_paths_ph: feat_paths, feat2_paths_ph: feat2_paths, feat3_paths_ph: feat3_paths, label_paths_ph: label_paths }) # for each epoch batch_count = 1 while True: try: ##################### Data loading ######################## start_time = time.time() eve, eve_sensors, eve_segment, lab, batch_sess = sess.run( next_train) # for memory concern, 1000 events are used in maximum if eve.shape[0] > 1000: idx = np.random.permutation(eve.shape[0])[:1000] eve = eve[idx] eve_sensors = eve_sensors[idx] eve_segment = eve_segment[idx] lab = lab[idx] batch_sess = batch_sess[idx] load_time = time.time() - start_time ##################### Triplet selection ##################### start_time = time.time() # for labeled sessions, use facenet sampling eve_labeled = [] lab_labeled = [] for i in range(eve.shape[0]): # FIXME: use decode again to get session_id str if batch_sess[i, 0].decode() in labeled_session: eve_labeled.append(eve[i]) lab_labeled.append(lab[i]) if len(eve_labeled): # if labeled sessions exist eve_labeled = np.stack(eve_labeled, axis=0) lab_labeled = np.stack(lab_labeled, axis=0) # Get the embeddings of all events eve_embedding = np.zeros( (eve_labeled.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip( range(0, eve_labeled.shape[0], cfg.batch_size), range( cfg.batch_size, eve_labeled.shape[0] + cfg.batch_size, cfg.batch_size)): end = min(end, eve_labeled.shape[0]) emb = sess.run(embedding, feed_dict={ input_ph: eve_labeled[start:end], dropout_ph: 1.0 }) eve_embedding[start:end] = np.copy(emb) # Second, sample triplets within sampled sessions all_diff = utils.all_diffs(eve_embedding, eve_embedding) triplet_input_idx, active_count = utils.select_triplets_facenet( lab_labeled, utils.cdist(all_diff, metric=cfg.metric), cfg.triplet_per_batch, cfg.alpha, num_negative=cfg.num_negative) if len(triplet_input_idx) == 0: triplet_input = eve_labeled[triplet_input_idx] else: active_count = -1 # for all sessions in the batch perm_idx = np.random.permutation(eve.shape[0]) perm_idx = perm_idx[:min(3 * (len(perm_idx) // 3), 3 * cfg.triplet_per_batch)] mul_input = eve[perm_idx] if len(eve_labeled) and triplet_input_idx is not None: triplet_input = np.concatenate( (triplet_input, mul_input), axis=0) else: triplet_input = mul_input sensors_input = eve_sensors[perm_idx] segment_input = eve_segment[perm_idx] ##################### Start training ######################## # supervised initialization if epoch < cfg.multimodal_epochs: if not len(eve_labeled ): # if no labeled sessions exist continue err, mse_err, _, step, summ = sess.run( [ total_loss, MSE_loss, train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, dropout_ph: cfg.keep_prob, lambda_mul_ph: 0.0, lr_ph: learning_rate }) else: print(triplet_input.shape) err, mse_err1, mse_err2, _, step, summ = sess.run( [ total_loss, MSE_loss_sensors, MSE_loss_segment, train_op, global_step, summary_op ], feed_dict={ input_ph: triplet_input, input_sensors_ph: sensors_input, input_segment_ph: segment_input, dropout_ph: cfg.keep_prob, lambda_mul_ph: cfg.lambda_multimodal, lr_ph: learning_rate }) train_time = time.time() - start_time print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tLoad time: %.3f\tTrain_time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], load_time, train_time, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value( tag="triplet_num", simple_value=(triplet_input.shape[0] - sensors_input.shape[0]) // 3), tf.Summary.Value(tag="MSE_loss_sensors", simple_value=mse_err1), tf.Summary.Value(tag="MSE_loss_segment", simple_value=mse_err2) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print("Epoch %d done!" % (epoch + 1)) break # validation on val_set print("Evaluating on validation set...") val_err1, val_err2, val_embeddings, _ = sess.run( [MSE_loss_sensors, MSE_loss_segment, embedding, set_emb], feed_dict={ input_ph: val_feats, input_sensors_ph: val_feats2, input_segment_ph: val_feats3, dropout_ph: 1.0 }) mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec), tf.Summary.Value(tag="Validation mse loss sensors", simple_value=val_err1), tf.Summary.Value(tag="Validation mse loss segment", simple_value=val_err2) ]) summary_writer.add_summary(summary, step) print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch + 1, mAP, mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def select_triplets(lab, eve_embedding, triplet_per_batch, alpha=0.2, num_negative=3, metric="squaredeuclidean"): """ Select the triplets for evaluation, some of them are simple, some of them are hard negative Arguments: eve -- array of event features, [N, n_seg, (dims)] lab -- array of labels, [N,] eve_embedding -- array of event embeddings, [N, emb_dim] triplet_per_batch -- int alpha -- float, margin num_negative -- number of negative samples per anchor-positive pairs metric -- metric to calculate distance """ # get distance for all pairs all_diff = utils.all_diffs(eve_embedding, eve_embedding) all_dist = utils.cdist(all_diff, metric=metric) idx_dict = {} for i, l in enumerate(lab): l = int(l) if l not in idx_dict: idx_dict[l] = [i] else: idx_dict[l].append(i) for key in idx_dict: random.shuffle(idx_dict[key]) # create iterators for each anchor-positive pair foreground_keys = [key for key in idx_dict.keys() if not key == 0] foreground_dict = {} for key in foreground_keys: foreground_dict[key] = itertools.permutations(idx_dict[key], 2) triplet_input_idx = [] all_neg_count = [] # for monitoring active count while (len(triplet_input_idx)) < triplet_per_batch * 3: keys = list(foreground_dict.keys()) if len(keys) == 0: break for key in keys: try: an_idx, pos_idx = foreground_dict[key].__next__() except: # remove the key to prevent infinite loop del foreground_dict[key] continue pos_dist = all_dist[an_idx, pos_idx] neg_dist = np.copy( all_dist[an_idx] ) # important to make a copy, otherwise is reference neg_dist[idx_dict[key]] = np.NaN # hard ones all_neg = np.where( np.logical_and(neg_dist - pos_dist < alpha, pos_dist < neg_dist))[0] if len(all_neg) > 0: neg_idx = all_neg[np.random.randint(len(all_neg))] triplet_input_idx.extend([an_idx, pos_idx, neg_idx]) # simple ones all_neg = np.where(neg_dist - pos_dist > alpha)[0] neg_idx = all_neg[np.random.randint(len(all_neg))] triplet_input_idx.extend([an_idx, pos_idx, neg_idx]) if len(triplet_input_idx) > 0: return triplet_input_idx, np.mean(all_neg_count) else: return None, None
def main(): cfg = TrainConfig().parse() print(cfg.name) result_dir = os.path.join( cfg.result_root, cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset feat_train = np.load('/mnt/work/CUB_200_2011/data/feat_train.npy') val_feats = np.load('/mnt/work/CUB_200_2011/data/feat_test.npy') label_train = np.load('/mnt/work/CUB_200_2011/data/label_train.npy') label_train -= 1 # make labels start from 0 val_labels = np.load('/mnt/work/CUB_200_2011/data/label_test.npy') class_idx_dict = {} for i, l in enumerate(label_train): l = int(l) if l not in class_idx_dict: class_idx_dict[l] = [i] else: class_idx_dict[l].append(i) C = len(list(class_idx_dict.keys())) val_triplet_idx = select_triplets_random(val_labels, 1000) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: for l in val_labels: fout.write('{}\n'.format(int(l))) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') # load backbone model model_emb = networks.CUBLayer(n_input=1024, n_output=cfg.emb_dim) #model_emb = networks.OutputLayer(n_input=1024, n_output=cfg.emb_dim) # get the embedding input_ph = tf.placeholder(tf.float32, shape=[None, 1024]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.logits, axis=-1, epsilon=1e-10) else: embedding = model_emb.logits # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance # diffs = utils.all_diffs_tf(embedding, embedding) # all_dist = utils.cdist_tf(diffs) # tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embedding, [-1, 3, cfg.emb_dim]), 3, 1) metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) regularization_loss = tf.reduce_sum( tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = metric_loss + regularization_loss * cfg.lambda_l2 tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, tf.global_variables()) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all() # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) ################## Training loop ################## for epoch in range(cfg.max_epochs): # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.001**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # sample images class_in_batch = set() idx_batch = np.array([], dtype=np.int32) while len(idx_batch) < cfg.batch_size: sampled_class = np.random.choice( list(class_idx_dict.keys())) if not sampled_class in class_in_batch: class_in_batch.add(sampled_class) subsample_size = np.random.choice(range(5, 11)) subsample = np.random.permutation( class_idx_dict[sampled_class])[:subsample_size] idx_batch = np.append(idx_batch, subsample) idx_batch = idx_batch[:cfg.batch_size] feat_batch = feat_train[idx_batch] lab_batch = label_train[idx_batch] emb = sess.run(embedding, feed_dict={ input_ph: feat_batch, dropout_ph: 1.0 }) # get distance for all pairs all_diff = utils.all_diffs(emb, emb) triplet_input_idx, active_count = select_triplets_facenet( lab_batch, utils.cdist(all_diff, metric=cfg.metric), cfg.triplet_per_batch, cfg.alpha, num_negative=cfg.num_negative) if triplet_input_idx is not None: triplet_input = feat_batch[triplet_input_idx] # perform training on the selected triplets err, _, step, summ = sess.run( [total_loss, train_op, global_step, summary_op], feed_dict={ input_ph: triplet_input, dropout_ph: cfg.keep_prob, lr_ph: learning_rate }) print ("%s\tEpoch: %d\tImages num: %d\tTriplet num: %d\tLoss %.4f" % \ (cfg.name, epoch+1, feat_batch.shape[0], triplet_input.shape[0]//3, err)) summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value(tag="images_num", simple_value=feat_batch.shape[0]), tf.Summary.Value(tag="triplet_num", simple_value=triplet_input.shape[0] // 3) ]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) # validation on val_set if (epoch + 1) % 100 == 0: print("Evaluating on validation set...") val_err = sess.run(total_loss, feed_dict={ input_ph: val_feats[val_triplet_idx], dropout_ph: 1.0 }) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation loss", simple_value=val_err), ]) print("Epoch: [%d]\tloss: %.4f" % (epoch + 1, val_err)) if (epoch + 1) % 1000 == 0: val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={ input_ph: val_feats, dropout_ph: 1.0 }) mAP, mPrec, recall = utils.evaluate_simple( val_embeddings, val_labels) summary = tf.Summary(value=[ tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation Recall@1", simple_value=recall), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec) ]) print("Epoch: [%d]\tmAP: %.4f\trecall: %.4f" % (epoch + 1, mAP, recall)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join( result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) summary_writer.add_summary(summary, step) # save model saver.save(sess, os.path.join(result_dir, cfg.name + '.ckpt'), global_step=step)
def main(): cfg = TrainConfig().parse() print (cfg.name) result_dir = os.path.join(cfg.result_root, cfg.name+'_'+datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set)//cfg.sess_per_batch val_session = cfg.val_session val_set = prepare_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') # load backbone model if cfg.network == "tsn": model_emb = networks.TSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "rtsn": model_emb = networks.RTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_h=cfg.n_h, n_w=cfg.n_w, n_C=cfg.n_C, n_input=cfg.n_input) elif cfg.network == "convbirtsn": model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError # get the embedding if cfg.feat == "sensors" or cfg.feat == "segment": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None]) elif cfg.feat == "resnet" or cfg.feat == "segment_down": input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack(tf.reshape(embedding, [-1,3,cfg.emb_dim]), 3, 1) metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) total_loss = metric_loss + regularization_loss * cfg.lambda_l2 tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, tf.global_variables()) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all() # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = session_generator(feat_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=model_emb.prepare_input) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label(session[0], session[-1], model_emb.prepare_input_test) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id]*eve_batch.shape[0]) val_boundaries.extend(boundary) val_feats = np.concatenate(val_feats, axis=0) val_labels = np.concatenate(val_labels, axis=0) print ("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(i, val_labels[i,0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) # load pretrain model, if needed if cfg.model_path: print ("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs-1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.001**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) feat_paths = [path[0] for path in train_set] label_paths = [path[1] for path in train_set] # reshape a list to list of list # interesting hacky code from: https://stackoverflow.com/questions/10124751/convert-a-flat-list-to-list-of-list-in-python feat_paths = list(zip(*[iter(feat_paths)]*cfg.sess_per_batch)) label_paths = list(zip(*[iter(label_paths)]*cfg.sess_per_batch)) sess.run(train_sess_iterator.initializer, feed_dict={feat_paths_ph: feat_paths, label_paths_ph: label_paths}) # for each epoch batch_count = 1 while True: try: # Hierarchical sampling (same as fast rcnn) start_time_select = time.time() # First, sample sessions for a batch eve, se, lab = sess.run(next_train) # for memory concern, 1000 events are used in maximum if eve.shape[0] > 1000: idx = np.random.permutation(eve.shape[0])[:1000] eve = eve[idx] se = se[idx] lab = lab[idx] select_time1 = time.time() - start_time_select # Get the embeddings of all events eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip(range(0, eve.shape[0], cfg.batch_size), range(cfg.batch_size, eve.shape[0]+cfg.batch_size, cfg.batch_size)): end = min(end, eve.shape[0]) emb = sess.run(embedding, feed_dict={input_ph: eve[start:end], dropout_ph: 1.0}) eve_embedding[start:end] = emb # Second, sample triplets within sampled sessions if cfg.triplet_select == 'random': triplet_input = select_triplets_random(eve,lab,cfg.triplet_per_batch) negative_count = 0 elif cfg.triplet_select == 'facenet': # get distance for all pairs all_diff = utils.all_diffs(eve_embedding, eve_embedding) triplet_input_idx, active_count = utils.select_triplets_facenet(lab,utils.cdist(all_diff,metric=cfg.metric),cfg.triplet_per_batch,cfg.alpha,num_negative=cfg.num_negative) else: raise NotImplementedError select_time2 = time.time()-start_time_select-select_time1 if (triplet_input_idx) == 0: continue triplet_input = eve[triplet_input_idx] start_time_train = time.time() # perform training on the selected triplets err, _, step, summ = sess.run([total_loss, train_op, global_step, summary_op], feed_dict = {input_ph: triplet_input, dropout_ph: cfg.keep_prob, lr_ph: learning_rate}) train_time = time.time() - start_time_train print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tSelect_time1: %.3f\tSelect_time2: %.3f\tTrain_time: %.3f\tLoss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_input.shape[0]//3, select_time1, select_time2, train_time, err)) summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value(tag="triplet_num", simple_value=triplet_input.shape[0]//3)]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print ("Epoch %d done!" % (epoch+1)) break # validation on val_set print ("Evaluating on validation set...") val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={input_ph: val_feats, dropout_ph: 1.0}) mAP, mPrec, recall = utils.evaluate_simple(val_embeddings, val_labels) summary = tf.Summary(value=[tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation Recall@1", simple_value=recall), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec)]) summary_writer.add_summary(summary, step) print ("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch+1,mAP,mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join(result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name+'.ckpt'), global_step=step)
def main(): cfg = TrainConfig().parse() print (cfg.name) result_dir = os.path.join(cfg.result_root, cfg.name+'_'+datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')) if not os.path.isdir(result_dir): os.makedirs(result_dir) utils.write_configure_to_file(cfg, result_dir) np.random.seed(seed=cfg.seed) # prepare dataset train_session = cfg.train_session train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root) train_set = train_set[:cfg.label_num] batch_per_epoch = len(train_set)//cfg.sess_per_batch val_session = cfg.val_session val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root) # construct the graph with tf.Graph().as_default(): tf.set_random_seed(cfg.seed) global_step = tf.Variable(0, trainable=False) lr_ph = tf.placeholder(tf.float32, name='learning_rate') ####################### Load models here ######################## with tf.variable_scope("modality_core"): # load backbone model if cfg.network == "convtsn": model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) elif cfg.network == "convrtsn": model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim) else: raise NotImplementedError input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None, None, None]) dropout_ph = tf.placeholder(tf.float32, shape=[]) model_emb.forward(input_ph, dropout_ph) # for lstm has variable scope with tf.variable_scope("modality_sensors"): sensors_emb_dim = 32 model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim) input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8]) model_emb_sensors.forward(input_sensors_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_sensors"): var_list[v.op.name.replace("modality_sensors/","")] = v restore_saver_sensors = tf.train.Saver(var_list) with tf.variable_scope("modality_segment"): segment_emb_dim = 32 model_emb_segment = networks.RTSN(n_seg=cfg.num_seg, emb_dim=segment_emb_dim, n_input=357) input_segment_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 357]) model_emb_segment.forward(input_segment_ph, dropout_ph) var_list = {} for v in tf.global_variables(): if v.op.name.startswith("modality_segment"): var_list[v.op.name.replace("modality_segment/","")] = v restore_saver_segment = tf.train.Saver(var_list) ############################# Forward Pass ############################# # Core branch if cfg.normalized: embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10) embedding_sensors = tf.nn.l2_normalize(model_emb_sensors.hidden, axis=-1, epsilon=1e-10) embedding_hal_sensors = tf.nn.l2_normalize(hal_emb_sensors.hidden, axis=-1, epsilon=1e-10) embedding_segment = tf.nn.l2_normalize(model_emb_segment.hidden, axis=-1, epsilon=1e-10) embedding_hal_segment = tf.nn.l2_normalize(hal_emb_segment.hidden, axis=-1, epsilon=1e-10) else: embedding = model_emb.hidden embedding_sensors = model_emb_sensors.hidden embedding_hal_sensors = hal_emb_sensors.hidden embedding_segment = model_emb_segment.hidden embedding_hal_segment = hal_emb_segment.hidden # variable for visualizing the embeddings emb_var = tf.Variable([0.0], name='embeddings') set_emb = tf.assign(emb_var, embedding, validate_shape=False) # calculated for monitoring all-pair embedding distance diffs = utils.all_diffs_tf(embedding, embedding) all_dist = utils.cdist_tf(diffs) tf.summary.histogram('embedding_dists', all_dist) # split embedding into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack(tf.reshape(embedding, [-1,3,cfg.emb_dim]), 3, 1) anc_sensors, pos_sensors, neg_sensors = tf.unstack(tf.reshape(embedding_sensors, [-1,3,sensors_emb_dim]), 3, 1) anc_hal_sensors, pos_hal_sensors, neg_hal_sensors = tf.unstack(tf.reshape(embedding_hal_sensors, [-1,3,sensors_emb_dim]), 3, 1) anc_segment, pos_segment, neg_segment = tf.unstack(tf.reshape(embedding_segment, [-1,3,segment_emb_dim]), 3, 1) anc_hal_segment, pos_hal_segment, neg_hal_segment = tf.unstack(tf.reshape(embedding_hal_segment, [-1,3,segment_emb_dim]), 3, 1) # a fusion embedding anc_fused = tf.concat((anchor, anc_hal_sensors, anc_hal_segment), axis=1) pos_fused = tf.concat((positive, pos_hal_sensors, anc_hal_segment), axis=1) neg_fused = tf.concat((negative, neg_hal_sensors, anc_hal_segment), axis=1) ############################# Calculate loss ############################# # triplet loss metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) + \ networks.triplet_loss(anc_sensors, pos_sensors, neg_sensors, cfg.alpha) + \ networks.triplet_loss(anc_hal_sensors, pos_hal_sensors, neg_hal_sensors, cfg.alpha) + \ networks.triplet_loss(anc_segment, pos_segment, neg_segment, cfg.alpha) + \ networks.triplet_loss(anc_hal_segment, pos_hal_segment, neg_hal_segment, cfg.alpha) + \ networks.triplet_loss(anc_fused, pos_fused, neg_fused, cfg.alpha) # hallucination loss (regression loss) hal_loss_sensors = tf.nn.l2_loss(embedding_sensors - embedding_hal_sensors) hal_loss_segment = tf.nn.l2_loss(embedding_segment - embedding_hal_segment) hal_loss = hal_loss_sensors + hal_loss_segment regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) # use lambda_multimodal for hal_loss total_loss = metric_loss + cfg.lambda_multimodal * hal_loss + regularization_loss * cfg.lambda_l2 tf.summary.scalar('learning_rate', lr_ph) train_op = utils.optimize(total_loss, global_step, cfg.optimizer, lr_ph, tf.global_variables()) saver = tf.train.Saver(max_to_keep=10) summary_op = tf.summary.merge_all() # not logging histogram of variables because it will cause problem when only unimodal_train_op is called ######################################################################### # session iterator for session sampling feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) feat3_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch]) train_data = multimodal_session_generator(feat_paths_ph, feat2_paths_ph, feat3_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[model_emb.prepare_input, model_emb_sensors.prepare_input, model_emb_segment.prepare_input]) train_sess_iterator = train_data.make_initializable_iterator() next_train = train_sess_iterator.get_next() # prepare validation data val_sess = [] val_feats = [] val_feats2 = [] val_feats3 = [] val_labels = [] val_boundaries = [] for session in val_set: session_id = os.path.basename(session[1]).split('_')[0] eve_batch, lab_batch, boundary = load_data_and_label(session[0], session[-1], model_emb.prepare_input_test) # use prepare_input_test for testing time val_feats.append(eve_batch) val_labels.append(lab_batch) val_sess.extend([session_id]*eve_batch.shape[0]) val_boundaries.extend(boundary) eve2_batch, _,_ = load_data_and_label(session[1], session[-1], model_emb_sensors.prepare_input_test) val_feats2.append(eve2_batch) eve3_batch, _,_ = load_data_and_label(session[2], session[-1], model_emb_segment.prepare_input_test) val_feats3.append(eve3_batch) val_feats = np.concatenate(val_feats, axis=0) val_feats2 = np.concatenate(val_feats2, axis=0) val_feats3 = np.concatenate(val_feats3, axis=0) val_labels = np.concatenate(val_labels, axis=0) print ("Shape of val_feats: ", val_feats.shape) # generate metadata.tsv for visualize embedding with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout: fout.write('id\tlabel\tsession_id\tstart\tend\n') for i in range(len(val_sess)): fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(i, val_labels[i,0], val_sess[i], val_boundaries[i][0], val_boundaries[i][1])) ######################################################################### # Start running the graph if cfg.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) summary_writer = tf.summary.FileWriter(result_dir, sess.graph) with sess.as_default(): sess.run(tf.global_variables_initializer()) print ("Restoring sensors model: %s" % cfg.sensors_path) restore_saver_sensors.restore(sess, cfg.sensors_path) print ("Restoring segment model: %s" % cfg.segment_path) restore_saver_segment.restore(sess, cfg.segment_path) # load pretrain model, if needed if cfg.model_path: print ("Restoring pretrained model: %s" % cfg.model_path) saver.restore(sess, cfg.model_path) ################## Training loop ################## epoch = -1 while epoch < cfg.max_epochs-1: step = sess.run(global_step, feed_dict=None) epoch = step // batch_per_epoch # learning rate schedule, reference: "In defense of Triplet Loss" if epoch < cfg.static_epochs: learning_rate = cfg.learning_rate else: learning_rate = cfg.learning_rate * \ 0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs)) # prepare data for this epoch random.shuffle(train_set) paths = list(zip(*[iter(train_set)]*cfg.sess_per_batch)) feat_paths = [[p[0] for p in path] for path in paths] feat2_paths = [[p[1] for p in path] for path in paths] feat3_paths = [[p[2] for p in path] for path in paths] label_paths = [[p[-1] for p in path] for path in paths] sess.run(train_sess_iterator.initializer, feed_dict={feat_paths_ph: feat_paths, feat2_paths_ph: feat2_paths, feat3_paths_ph: feat3_paths, label_paths_ph: label_paths}) # for each epoch batch_count = 1 while True: try: ##################### Data loading ######################## start_time = time.time() eve, eve_sensors, eve_segment, lab, batch_sess = sess.run(next_train) load_time = time.time() - start_time ##################### Triplet selection ##################### start_time = time.time() # Get the embeddings of all events eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32') for start, end in zip(range(0, eve.shape[0], cfg.batch_size), range(cfg.batch_size, eve.shape[0]+cfg.batch_size, cfg.batch_size)): end = min(end, eve.shape[0]) emb = sess.run(embedding, feed_dict={input_ph: eve[start:end], dropout_ph: 1.0}) eve_embedding[start:end] = np.copy(emb) # sample triplets within sampled sessions all_diff = utils.all_diffs(eve_embedding, eve_embedding) triplet_input_idx, active_count = utils.select_triplets_facenet(lab,utils.cdist(all_diff,metric=cfg.metric),cfg.triplet_per_batch,cfg.alpha,num_negative=cfg.num_negative) if triplet_input_idx is None: continue triplet_input = eve[triplet_input_idx] sensors_input = eve_sensors[triplet_input_idx] segment_input = eve_segment[triplet_input_idx] select_time = time.time() - start_time if len(triplet_input.shape) > 5: # debugging pdb.set_trace() ##################### Start training ######################## err, metric_err, hal_err, _, step, summ = sess.run( [total_loss, metric_loss, hal_loss, train_op, global_step, summary_op], feed_dict = {input_ph: triplet_input, input_sensors_ph: sensors_input, input_segment_ph: segment_input, dropout_ph: cfg.keep_prob, lr_ph: learning_rate}) print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tLoad time: %.3f\tSelect time: %.3f\tMetric Loss %.4f\tHal Loss %.4f" % \ (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_input.shape[0]//3, load_time, select_time, metric_err, hal_err)) summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=err), tf.Summary.Value(tag="active_count", simple_value=active_count), tf.Summary.Value(tag="metric_loss", simple_value=metric_err), tf.Summary.Value(tag="hallucination_loss", simple_value=hal_err)]) summary_writer.add_summary(summary, step) summary_writer.add_summary(summ, step) batch_count += 1 except tf.errors.OutOfRangeError: print ("Epoch %d done!" % (epoch+1)) break # validation on val_set print ("Evaluating on validation set...") val_embeddings, hal_err, _ = sess.run([embedding, hal_loss, set_emb], feed_dict = {input_ph: val_feats, input_sensors_ph: val_feats2, input_segment_ph: val_feats3, dropout_ph: 1.0}) mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels) summary = tf.Summary(value=[tf.Summary.Value(tag="Valiation mAP", simple_value=mAP), tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec), tf.Summary.Value(tag="Validation hal loss", simple_value=hal_err)]) summary_writer.add_summary(summary, step) print ("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch+1,mAP,mPrec)) # config for embedding visualization config = projector.ProjectorConfig() visual_embedding = config.embeddings.add() visual_embedding.tensor_name = emb_var.name visual_embedding.metadata_path = os.path.join(result_dir, 'metadata_val.tsv') projector.visualize_embeddings(summary_writer, config) # save model saver.save(sess, os.path.join(result_dir, cfg.name+'.ckpt'), global_step=step)
def select_triplets_facenet(lab, eve_embedding, triplet_per_batch, alpha=0.2, num_negative=3, metric="squaredeuclidean"): """ Select the triplets for training 1. Sample anchor-positive pair (try to balance imbalanced classes) 2. Semi-hard negative mining used in facenet Arguments: lab -- array of labels, [N,] eve_embedding -- array of event embeddings, [N, emb_dim] triplet_per_batch -- int alpha -- float, margin num_negative -- number of negative samples per anchor-positive pairs metric -- metric to calculate distance """ # get distance for all pairs all_diff = utils.all_diffs(eve_embedding, eve_embedding) all_dist = utils.cdist(all_diff, metric=metric) idx_dict = {} for i, l in enumerate(lab): l = int(l) if l not in idx_dict: idx_dict[l] = [i] else: idx_dict[l].append(i) for key in idx_dict: random.shuffle(idx_dict[key]) # create iterators for each anchor-positive pair foreground_keys = [key for key in idx_dict.keys() if not key == 0] foreground_dict = {} for key in foreground_keys: foreground_dict[key] = itertools.permutations(idx_dict[key], 2) triplet_input_idx = [] all_neg_count = [] # for monitoring active count while (len(triplet_input_idx)) < triplet_per_batch * 3: keys = list(foreground_dict.keys()) if len(keys) == 0: break for key in keys: try: an_idx, pos_idx = foreground_dict[key].__next__() except: # remove the key to prevent infinite loop del foreground_dict[key] continue pos_dist = all_dist[an_idx, pos_idx] neg_dist = np.copy( all_dist[an_idx] ) # important to make a copy, otherwise is reference neg_dist[idx_dict[key]] = np.NaN all_neg = np.where( np.logical_and(neg_dist - pos_dist < alpha, pos_dist < neg_dist))[0] all_neg_count.append(len(all_neg)) # continue if no proper negtive sample if len(all_neg) > 0: for i in range(num_negative): neg_idx = all_neg[np.random.randint(len(all_neg))] triplet_input_idx.extend([an_idx, pos_idx, neg_idx]) #triplet_input.append(np.expand_dims(eve[an_idx],0)) #triplet_input.append(np.expand_dims(eve[pos_idx],0)) #triplet_input.append(np.expand_dims(eve[neg_idx],0)) if len(triplet_input) > 0: return triplet_input_idx, np.mean(all_neg_count) # return np.concatenate(triplet_input, axis=0), np.mean(all_neg_count) else: return None, None