コード例 #1
0
def main():

    cfg = TrainConfig().parse()
    print(cfg.name)
    result_dir = os.path.join(
        cfg.result_root,
        cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S'))
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    utils.write_configure_to_file(cfg, result_dir)
    np.random.seed(seed=cfg.seed)

    # prepare dataset
    train_session = cfg.train_session
    train_set = prepare_multimodal_dataset(cfg.feature_root, train_session,
                                           cfg.feat, cfg.label_root)
    if cfg.task == "supervised":  # fully supervised task
        train_set = train_set[:cfg.label_num]
    batch_per_epoch = len(train_set) // cfg.sess_per_batch
    labeled_session = train_session[:cfg.label_num]

    val_session = cfg.val_session
    val_set = prepare_multimodal_dataset(cfg.feature_root, val_session,
                                         cfg.feat, cfg.label_root)

    # construct the graph
    with tf.Graph().as_default():
        tf.set_random_seed(cfg.seed)
        global_step = tf.Variable(0, trainable=False)
        lr_ph = tf.placeholder(tf.float32, name='learning_rate')

        ####################### Load models here ########################
        sensors_emb_dim = 32
        segment_emb_dim = 32

        with tf.variable_scope("modality_core"):
            # load backbone model
            if cfg.network == "convtsn":
                model_emb = networks.ConvTSN(n_seg=cfg.num_seg,
                                             emb_dim=cfg.emb_dim)
            elif cfg.network == "convrtsn":
                model_emb = networks.ConvRTSN(n_seg=cfg.num_seg,
                                              emb_dim=cfg.emb_dim)
            elif cfg.network == "convbirtsn":
                model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg,
                                                emb_dim=cfg.emb_dim)
            else:
                raise NotImplementedError

            input_ph = tf.placeholder(
                tf.float32, shape=[None, cfg.num_seg, None, None, None])
            dropout_ph = tf.placeholder(tf.float32, shape=[])
            model_emb.forward(input_ph,
                              dropout_ph)  # for lstm has variable scope

        with tf.variable_scope("modality_sensors"):
            model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg,
                                              emb_dim=sensors_emb_dim)
            model_pairsim_sensors = networks.PDDM(n_input=sensors_emb_dim)

            input_sensors_ph = tf.placeholder(tf.float32,
                                              shape=[None, cfg.num_seg, 8])
            model_emb_sensors.forward(input_sensors_ph, dropout_ph)

            var_list = {}
            for v in tf.global_variables():
                if v.op.name.startswith("modality_sensors"):
                    var_list[v.op.name.replace("modality_sensors/", "")] = v
            restore_saver_sensors = tf.train.Saver(var_list)

        with tf.variable_scope("modality_segment"):
            model_emb_segment = networks.RTSN(n_seg=cfg.num_seg,
                                              emb_dim=segment_emb_dim,
                                              n_input=357)
            model_pairsim_segment = networks.PDDM(n_input=segment_emb_dim)

            input_segment_ph = tf.placeholder(tf.float32,
                                              shape=[None, cfg.num_seg, 357])
            model_emb_segment.forward(input_segment_ph, dropout_ph)

            var_list = {}
            for v in tf.global_variables():
                if v.op.name.startswith("modality_segment"):
                    var_list[v.op.name.replace("modality_segment/", "")] = v
            restore_saver_segment = tf.train.Saver(var_list)

        ############################# Forward Pass #############################

        # Core branch
        if cfg.normalized:
            embedding = tf.nn.l2_normalize(model_emb.hidden,
                                           axis=-1,
                                           epsilon=1e-10)
        else:
            embedding = model_emb.hidden

        # get the number of multimodal triplets (x3)
        mul_num_ph = tf.placeholder(tf.int32, shape=[])
        margins_ph = tf.placeholder(tf.float32, shape=[None])
        struct_num = tf.shape(margins_ph)[0] * 3

        # variable for visualizing the embeddings
        emb_var = tf.Variable([0.0], name='embeddings')
        set_emb = tf.assign(emb_var, embedding, validate_shape=False)

        # calculated for monitoring all-pair embedding distance
        diffs = utils.all_diffs_tf(embedding, embedding)
        all_dist = utils.cdist_tf(diffs)
        tf.summary.histogram('embedding_dists', all_dist)

        # split embedding into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embedding[:(tf.shape(embedding)[0] - mul_num_ph)],
                       [-1, 3, cfg.emb_dim]), 3, 1)
        anchor_hard, positive_hard, negative_hard = tf.unstack(
            tf.reshape(embedding[-mul_num_ph:-struct_num],
                       [-1, 3, cfg.emb_dim]), 3, 1)
        anchor_struct, positive_struct, negative_struct = tf.unstack(
            tf.reshape(embedding[-struct_num:], [-1, 3, cfg.emb_dim]), 3, 1)

        # Sensors branch
        emb_sensors = model_emb_sensors.hidden
        A_sensors, B_sensors, C_sensors = tf.unstack(
            tf.reshape(emb_sensors, [-1, 3, sensors_emb_dim]), 3, 1)
        model_pairsim_sensors.forward(tf.stack([A_sensors, B_sensors], axis=1))
        pddm_AB_sensors = model_pairsim_sensors.prob[:, 1]
        model_pairsim_sensors.forward(tf.stack([A_sensors, C_sensors], axis=1))
        pddm_AC_sensors = model_pairsim_sensors.prob[:, 1]

        # Segment branch
        emb_segment = model_emb_segment.hidden
        A_segment, B_segment, C_segment = tf.unstack(
            tf.reshape(emb_segment, [-1, 3, segment_emb_dim]), 3, 1)
        model_pairsim_segment.forward(tf.stack([A_segment, B_segment], axis=1))
        pddm_AB_segment = model_pairsim_segment.prob[:, 1]
        model_pairsim_segment.forward(tf.stack([A_segment, C_segment], axis=1))
        pddm_AC_segment = model_pairsim_segment.prob[:, 1]

        # fuse prob from all modalities
        prob_AB = 0.5 * (pddm_AB_sensors + pddm_AB_segment)
        prob_AC = 0.5 * (pddm_AC_sensors + pddm_AC_segment)

        ############################# Calculate loss #############################

        # triplet loss for labeled inputs
        metric_loss1 = networks.triplet_loss(anchor, positive, negative,
                                             cfg.alpha)

        # weighted triplet loss for multimodal inputs
        #        if cfg.weighted:
        #            metric_loss2, _ = networks.weighted_triplet_loss(anchor_hard, positive_hard, negative_hard, prob_AB, prob_AC, cfg.alpha)
        #        else:

        # triplet loss for hard examples from multimodal data
        metric_loss2 = networks.triplet_loss(anchor_hard, positive_hard,
                                             negative_hard, cfg.alpha)

        # margin-based triplet loss for structure mining from multimodal data
        metric_loss3 = networks.triplet_loss(anchor_struct, positive_struct,
                                             negative_struct, margins_ph)

        # whether to apply joint optimization
        if cfg.no_joint:
            unimodal_var_list = [
                v for v in tf.global_variables()
                if v.op.name.startswith("modality_core")
            ]
            train_var_list = unimodal_var_list
        else:
            multimodal_var_list = [
                v for v in tf.global_variables()
                if not (v.op.name.startswith("modality_sensors/RTSN")
                        or v.op.name.startswith("modality_segment/RTSN"))
            ]
            train_var_list = multimodal_var_list

        regularization_loss = tf.reduce_sum(
            tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
        total_loss = tf.cond(
            tf.greater(mul_num_ph, 0), lambda: tf.cond(
                tf.equal(mul_num_ph,
                         tf.shape(embedding)[0]), lambda:
                (metric_loss2 + metric_loss3 * 0.3) * cfg.lambda_multimodal +
                regularization_loss * cfg.lambda_l2, lambda: metric_loss1 +
                (metric_loss2 + metric_loss3 * 0.3) * cfg.lambda_multimodal +
                regularization_loss * cfg.lambda_l2),
            lambda: metric_loss1 + regularization_loss * cfg.lambda_l2)

        tf.summary.scalar('learning_rate', lr_ph)
        train_op = utils.optimize(total_loss, global_step, cfg.optimizer,
                                  lr_ph, train_var_list)

        saver = tf.train.Saver(max_to_keep=10)
        summary_op = tf.summary.merge_all(
        )  # not logging histogram of variables because it will cause problem when only unimodal_train_op is called

        summ_prob_AB = tf.summary.histogram('Prob_AB_histogram', prob_AB)
        summ_prob_AC = tf.summary.histogram('Prob_AC_histogram', prob_AC)
        #        summ_weights = tf.summary.histogram('Weights_histogram', weights)

        #########################################################################

        # session iterator for session sampling
        feat_paths_ph = tf.placeholder(tf.string,
                                       shape=[None, cfg.sess_per_batch])
        feat2_paths_ph = tf.placeholder(tf.string,
                                        shape=[None, cfg.sess_per_batch])
        feat3_paths_ph = tf.placeholder(tf.string,
                                        shape=[None, cfg.sess_per_batch])
        label_paths_ph = tf.placeholder(tf.string,
                                        shape=[None, cfg.sess_per_batch])
        train_data = multimodal_session_generator(
            feat_paths_ph,
            feat2_paths_ph,
            feat3_paths_ph,
            label_paths_ph,
            sess_per_batch=cfg.sess_per_batch,
            num_threads=2,
            shuffled=False,
            preprocess_func=[
                model_emb.prepare_input, model_emb_sensors.prepare_input,
                model_emb_segment.prepare_input
            ])
        train_sess_iterator = train_data.make_initializable_iterator()
        next_train = train_sess_iterator.get_next()

        # prepare validation data
        val_sess = []
        val_feats = []
        val_feats2 = []
        val_feats3 = []
        val_labels = []
        val_boundaries = []
        for session in val_set:
            session_id = os.path.basename(session[1]).split('_')[0]
            eve_batch, lab_batch, boundary = load_data_and_label(
                session[0], session[-1], model_emb.prepare_input_test
            )  # use prepare_input_test for testing time
            val_feats.append(eve_batch)
            val_labels.append(lab_batch)
            val_sess.extend([session_id] * eve_batch.shape[0])
            val_boundaries.extend(boundary)

            eve2_batch, _, _ = load_data_and_label(
                session[1], session[-1], model_emb_sensors.prepare_input_test)
            val_feats2.append(eve2_batch)

            eve3_batch, _, _ = load_data_and_label(
                session[2], session[-1], model_emb_segment.prepare_input_test)
            val_feats3.append(eve3_batch)
        val_feats = np.concatenate(val_feats, axis=0)
        val_feats2 = np.concatenate(val_feats2, axis=0)
        val_feats3 = np.concatenate(val_feats3, axis=0)
        val_labels = np.concatenate(val_labels, axis=0)
        print("Shape of val_feats: ", val_feats.shape)

        # generate metadata.tsv for visualize embedding
        with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout:
            fout.write('id\tlabel\tsession_id\tstart\tend\n')
            for i in range(len(val_sess)):
                fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(
                    i, val_labels[i, 0], val_sess[i], val_boundaries[i][0],
                    val_boundaries[i][1]))

        #########################################################################

        # Start running the graph
        if cfg.gpu:
            os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu

        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        summary_writer = tf.summary.FileWriter(result_dir, sess.graph)

        with sess.as_default():

            sess.run(tf.global_variables_initializer())

            # load pretrain model, if needed
            if cfg.model_path:
                print("Restoring pretrained model: %s" % cfg.model_path)
                saver.restore(sess, cfg.model_path)

            print("Restoring sensors model: %s" % cfg.sensors_path)
            restore_saver_sensors.restore(sess, cfg.sensors_path)
            print("Restoring segment model: %s" % cfg.segment_path)
            restore_saver_segment.restore(sess, cfg.segment_path)

            ################## Training loop ##################

            # Initialize pairwise embedding distance for each class on validation set
            val_embeddings, _ = sess.run([embedding, set_emb],
                                         feed_dict={
                                             input_ph: val_feats,
                                             dropout_ph: 1.0
                                         })
            dist_dict = {}
            for i in range(np.max(val_labels) + 1):
                temp_emb = val_embeddings[np.where(val_labels == i)[0]]
                dist_dict[i] = [
                    np.mean(
                        utils.cdist(utils.all_diffs(temp_emb, temp_emb),
                                    metric=cfg.metric))
                ]

            epoch = -1
            while epoch < cfg.max_epochs - 1:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // batch_per_epoch

                # learning rate schedule, reference: "In defense of Triplet Loss"
                if epoch < cfg.static_epochs:
                    learning_rate = cfg.learning_rate
                else:
                    learning_rate = cfg.learning_rate * \
                            0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs))

                # prepare data for this epoch
                random.shuffle(train_set)

                paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch))

                feat_paths = [[p[0] for p in path] for path in paths]
                feat2_paths = [[p[1] for p in path] for path in paths]
                feat3_paths = [[p[2] for p in path] for path in paths]
                label_paths = [[p[-1] for p in path] for path in paths]

                sess.run(train_sess_iterator.initializer,
                         feed_dict={
                             feat_paths_ph: feat_paths,
                             feat2_paths_ph: feat2_paths,
                             feat3_paths_ph: feat3_paths,
                             label_paths_ph: label_paths
                         })

                # for each epoch
                batch_count = 1
                while True:
                    try:
                        ##################### Data loading ########################
                        start_time = time.time()
                        eve, eve_sensors, eve_segment, lab, batch_sess = sess.run(
                            next_train)

                        # for memory concern, 1000 events are used in maximum
                        if eve.shape[0] > cfg.event_per_batch:
                            idx = np.random.permutation(
                                eve.shape[0])[:cfg.event_per_batch]
                            eve = eve[idx]
                            eve_sensors = eve_sensors[idx]
                            eve_segment = eve_segment[idx]
                            lab = lab[idx]
                            batch_sess = batch_sess[idx]
                        load_time = time.time() - start_time

                        ##################### Triplet selection #####################
                        start_time = time.time()
                        # Get the embeddings of all events
                        eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim),
                                                 dtype='float32')
                        for start, end in zip(
                                range(0, eve.shape[0], cfg.batch_size),
                                range(cfg.batch_size,
                                      eve.shape[0] + cfg.batch_size,
                                      cfg.batch_size)):
                            end = min(end, eve.shape[0])
                            emb = sess.run(embedding,
                                           feed_dict={
                                               input_ph: eve[start:end],
                                               dropout_ph: 1.0
                                           })
                            eve_embedding[start:end] = np.copy(emb)

                        # sample triplets within sampled sessions
                        all_diff = utils.all_diffs(eve_embedding,
                                                   eve_embedding)
                        triplet_selected, active_count = utils.select_triplets_facenet(
                            lab, utils.cdist(all_diff, metric=cfg.metric),
                            cfg.triplet_per_batch, cfg.alpha)

                        hard_count = 0
                        struct_count = 0
                        if epoch >= cfg.multimodal_epochs:
                            # Get the similarity of all events
                            sim_prob = np.zeros((eve.shape[0], eve.shape[0]),
                                                dtype='float32') * np.nan
                            comb = list(
                                itertools.combinations(range(eve.shape[0]), 2))
                            for start, end in zip(
                                    range(0, len(comb), cfg.batch_size),
                                    range(cfg.batch_size,
                                          len(comb) + cfg.batch_size,
                                          cfg.batch_size)):
                                end = min(end, len(comb))
                                comb_idx = []
                                for c in comb[start:end]:
                                    comb_idx.extend([c[0], c[1], c[1]])
                                sim = sess.run(prob_AB,
                                               feed_dict={
                                                   input_sensors_ph:
                                                   eve_sensors[comb_idx],
                                                   input_segment_ph:
                                                   eve_segment[comb_idx],
                                                   dropout_ph:
                                                   1.0
                                               })
                                for i in range(sim.shape[0]):
                                    sim_prob[comb[start + i][0],
                                             comb[start + i][1]] = sim[i]
                                    sim_prob[comb[start + i][1],
                                             comb[start + i][0]] = sim[i]

                            # sample triplets from similarity prediction
                            # maximum number not exceed the cfg.triplet_per_batch

                            triplet_input_idx, margins, triplet_count, hard_count, struct_count = select_triplets_mul(
                                triplet_selected, lab, sim_prob, dist_dict,
                                cfg.triplet_per_batch, 3, 0.8, 0.2)

                            # add up all multimodal triplets
                            multimodal_count = hard_count + struct_count

                            sensors_input = eve_sensors[
                                triplet_input_idx[-(3 * multimodal_count):]]
                            segment_input = eve_segment[
                                triplet_input_idx[-(3 * multimodal_count):]]

                        print(triplet_count, hard_count, struct_count)
                        triplet_input = eve[triplet_input_idx]

                        select_time = time.time() - start_time

                        if len(triplet_input.shape) > 5:  # debugging
                            pdb.set_trace()

                        ##################### Start training  ########################

                        # supervised initialization
                        if multimodal_count == 0:
                            if triplet_count == 0:
                                continue
                            err, metric_err1, _, step, summ = sess.run(
                                [
                                    total_loss, metric_loss1, train_op,
                                    global_step, summary_op
                                ],
                                feed_dict={
                                    input_ph: triplet_input,
                                    dropout_ph: cfg.keep_prob,
                                    mul_num_ph: 0,
                                    lr_ph: learning_rate
                                })
                            metric_err2 = 0
                            metric_err3 = 0
                        else:
                            err, metric_err1, metric_err2, metric_err3, _, step, summ, s_AB, s_AC = sess.run(
                                [
                                    total_loss, metric_loss1, metric_loss2,
                                    metric_loss3, train_op, global_step,
                                    summary_op, summ_prob_AB, summ_prob_AC
                                ],
                                feed_dict={
                                    input_ph: triplet_input,
                                    input_sensors_ph: sensors_input,
                                    input_segment_ph: segment_input,
                                    mul_num_ph: multimodal_count * 3,
                                    margins_ph: margins,
                                    dropout_ph: cfg.keep_prob,
                                    lr_ph: learning_rate
                                })
                            summary_writer.add_summary(s_AB, step)
                            summary_writer.add_summary(s_AC, step)


                        print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tLoad time: %.3f\tSelect time: %.3f\tLoss %.4f" % \
                                (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_count+multimodal_count, load_time, select_time, err))

                        summary = tf.Summary(value=[
                            tf.Summary.Value(tag="train_loss",
                                             simple_value=err),
                            tf.Summary.Value(tag="active_count",
                                             simple_value=active_count),
                            tf.Summary.Value(tag="triplet_count",
                                             simple_value=triplet_count),
                            tf.Summary.Value(tag="hard_count",
                                             simple_value=hard_count),
                            tf.Summary.Value(tag="struct_count",
                                             simple_value=struct_count),
                            tf.Summary.Value(tag="metric_loss1",
                                             simple_value=metric_err1),
                            tf.Summary.Value(tag="metric_loss3",
                                             simple_value=metric_err3),
                            tf.Summary.Value(tag="metric_loss2",
                                             simple_value=metric_err2)
                        ])

                        summary_writer.add_summary(summary, step)
                        summary_writer.add_summary(summ, step)

                        batch_count += 1

                    except tf.errors.OutOfRangeError:
                        print("Epoch %d done!" % (epoch + 1))
                        break

                # validation on val_set
                print("Evaluating on validation set...")
                val_embeddings, _ = sess.run([embedding, set_emb],
                                             feed_dict={
                                                 input_ph: val_feats,
                                                 dropout_ph: 1.0
                                             })
                mAP, mPrec, recall = utils.evaluate_simple(
                    val_embeddings, val_labels)
                summary = tf.Summary(value=[
                    tf.Summary.Value(tag="Valiation mAP", simple_value=mAP),
                    tf.Summary.Value(tag="Validation Recall@1",
                                     simple_value=recall),
                    tf.Summary.Value(tag="Validation [email protected]",
                                     simple_value=mPrec)
                ])
                summary_writer.add_summary(summary, step)
                print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" %
                      (epoch + 1, mAP, mPrec))

                # config for embedding visualization
                config = projector.ProjectorConfig()
                visual_embedding = config.embeddings.add()
                visual_embedding.tensor_name = emb_var.name
                visual_embedding.metadata_path = os.path.join(
                    result_dir, 'metadata_val.tsv')
                projector.visualize_embeddings(summary_writer, config)

                # update dist_dict
                if (epoch + 1) == 50 or (epoch + 1) % 200 == 0:
                    for i in dist_dict.keys():
                        temp_emb = val_embeddings[np.where(val_labels == i)[0]]
                        dist_dict[i].append(
                            np.mean(
                                utils.cdist(utils.all_diffs(
                                    temp_emb, temp_emb),
                                            metric=cfg.metric)))

                    pickle.dump(
                        dist_dict,
                        open(os.path.join(result_dir, 'dist_dict.pkl'), 'wb'))

                # save model
                saver.save(sess,
                           os.path.join(result_dir, cfg.name + '.ckpt'),
                           global_step=step)
def main():

    cfg = TrainConfig().parse()
    print(cfg.name)
    result_dir = os.path.join(
        cfg.result_root,
        cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S'))
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    utils.write_configure_to_file(cfg, result_dir)
    np.random.seed(seed=cfg.seed)

    # prepare dataset
    train_session = cfg.train_session
    train_set = prepare_multimodal_dataset(cfg.feature_root, train_session,
                                           cfg.feat, cfg.label_root)
    if cfg.task == "supervised":  # fully supervised task
        train_set = train_set[:cfg.label_num]
    batch_per_epoch = len(train_set) // cfg.sess_per_batch
    labeled_session = train_session[:cfg.label_num]

    val_session = cfg.val_session
    val_set = prepare_multimodal_dataset(cfg.feature_root, val_session,
                                         cfg.feat, cfg.label_root)

    # construct the graph
    with tf.Graph().as_default():
        tf.set_random_seed(cfg.seed)
        global_step = tf.Variable(0, trainable=False)
        lr_ph = tf.placeholder(tf.float32, name='learning_rate')

        ####################### Load models here ########################
        sensors_emb_dim = 32
        segment_emb_dim = 32

        with tf.variable_scope("modality_core"):
            # load backbone model
            if cfg.network == "convtsn":
                model_emb = networks.ConvTSN(n_seg=cfg.num_seg,
                                             emb_dim=cfg.emb_dim)
            elif cfg.network == "convrtsn":
                model_emb = networks.ConvRTSN(n_seg=cfg.num_seg,
                                              emb_dim=cfg.emb_dim)
            elif cfg.network == "convbirtsn":
                model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg,
                                                emb_dim=cfg.emb_dim)
            else:
                raise NotImplementedError

            input_ph = tf.placeholder(
                tf.float32, shape=[None, cfg.num_seg, None, None, None])
            dropout_ph = tf.placeholder(tf.float32, shape=[])
            model_emb.forward(input_ph,
                              dropout_ph)  # for lstm has variable scope

            with tf.variable_scope("sensors"):
                model_output_sensors = networks.OutputLayer(
                    n_input=cfg.emb_dim, n_output=sensors_emb_dim)
            with tf.variable_scope("segment"):
                model_output_segment = networks.OutputLayer(
                    n_input=cfg.emb_dim, n_output=segment_emb_dim)

        lambda_mul_ph = tf.placeholder(tf.float32, shape=[])
        with tf.variable_scope("modality_sensors"):
            model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg,
                                              emb_dim=sensors_emb_dim)

            input_sensors_ph = tf.placeholder(tf.float32,
                                              shape=[None, cfg.num_seg, 8])
            model_emb_sensors.forward(input_sensors_ph, dropout_ph)

            var_list = {}
            for v in tf.global_variables():
                if v.op.name.startswith("modality_sensors"):
                    var_list[v.op.name.replace("modality_sensors/", "")] = v
            restore_saver_sensors = tf.train.Saver(var_list)

        with tf.variable_scope("modality_segment"):
            model_emb_segment = networks.RTSN(n_seg=cfg.num_seg,
                                              emb_dim=segment_emb_dim,
                                              n_input=357)

            input_segment_ph = tf.placeholder(tf.float32,
                                              shape=[None, cfg.num_seg, 357])
            model_emb_segment.forward(input_segment_ph, dropout_ph)

            var_list = {}
            for v in tf.global_variables():
                if v.op.name.startswith("modality_segment"):
                    var_list[v.op.name.replace("modality_segment/", "")] = v
            restore_saver_segment = tf.train.Saver(var_list)

        ############################# Forward Pass #############################

        if cfg.normalized:
            embedding = tf.nn.l2_normalize(model_emb.hidden,
                                           axis=-1,
                                           epsilon=1e-10)
            embedding_sensors = tf.nn.l2_normalize(model_emb_sensors.hidden,
                                                   axis=-1,
                                                   epsilon=1e-10)
            embedding_segment = tf.nn.l2_normalize(model_emb_segment.hidden,
                                                   axis=-1,
                                                   epsilon=1e-10)
        else:
            embedding = model_emb.hidden
            embedding_sensors = model_emb_sensors.hidden
            embedding_segment = model_emb_segment.hidden

        # get the number of unsupervised training
        unsup_num = tf.shape(input_sensors_ph)[0]

        # variable for visualizing the embeddings
        emb_var = tf.Variable(tf.zeros([1116, cfg.emb_dim], dtype=tf.float32),
                              name='embeddings')
        set_emb = tf.assign(emb_var, embedding, validate_shape=False)

        # calculated for monitoring all-pair embedding distance
        diffs = utils.all_diffs_tf(embedding, embedding)
        all_dist = utils.cdist_tf(diffs)
        tf.summary.histogram('embedding_dists', all_dist)

        # split embedding into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embedding[:-unsup_num], [-1, 3, cfg.emb_dim]), 3, 1)
        metric_loss = networks.triplet_loss(anchor, positive, negative,
                                            cfg.alpha)

        model_output_sensors.forward(tf.nn.relu(embedding[-unsup_num:]),
                                     dropout_ph)
        logits_sensors = model_output_sensors.logits
        model_output_segment.forward(tf.nn.relu(embedding[-unsup_num:]),
                                     dropout_ph)
        logits_segment = model_output_segment.logits

        # MSE loss
        MSE_loss_sensors = tf.losses.mean_squared_error(
            embedding_sensors, logits_sensors) / sensors_emb_dim
        MSE_loss_segment = tf.losses.mean_squared_error(
            embedding_sensors, logits_segment) / segment_emb_dim
        MSE_loss = MSE_loss_sensors + MSE_loss_segment
        regularization_loss = tf.reduce_sum(
            tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
        total_loss = tf.cond(
            tf.equal(unsup_num,
                     tf.shape(embedding)[0]), lambda: MSE_loss * lambda_mul_ph
            + regularization_loss * cfg.lambda_l2, lambda: metric_loss +
            MSE_loss * lambda_mul_ph + regularization_loss * cfg.lambda_l2)

        tf.summary.scalar('learning_rate', lr_ph)
        # only train the core branch
        train_var_list = [
            v for v in tf.global_variables()
            if v.op.name.startswith("modality_core")
        ]
        train_op = utils.optimize(total_loss, global_step, cfg.optimizer,
                                  lr_ph, train_var_list)

        saver = tf.train.Saver(max_to_keep=10)

        summary_op = tf.summary.merge_all()

        #########################################################################

        # session iterator for session sampling
        feat_paths_ph = tf.placeholder(tf.string,
                                       shape=[None, cfg.sess_per_batch])
        feat2_paths_ph = tf.placeholder(tf.string,
                                        shape=[None, cfg.sess_per_batch])
        feat3_paths_ph = tf.placeholder(tf.string,
                                        shape=[None, cfg.sess_per_batch])
        label_paths_ph = tf.placeholder(tf.string,
                                        shape=[None, cfg.sess_per_batch])
        train_data = multimodal_session_generator(
            feat_paths_ph,
            feat2_paths_ph,
            feat3_paths_ph,
            label_paths_ph,
            sess_per_batch=cfg.sess_per_batch,
            num_threads=2,
            shuffled=False,
            preprocess_func=[
                model_emb.prepare_input, model_emb_sensors.prepare_input,
                model_emb_segment.prepare_input
            ])
        train_sess_iterator = train_data.make_initializable_iterator()
        next_train = train_sess_iterator.get_next()

        # prepare validation data
        val_sess = []
        val_feats = []
        val_feats2 = []
        val_feats3 = []
        val_labels = []
        val_boundaries = []
        for session in val_set:
            session_id = os.path.basename(session[1]).split('_')[0]
            eve_batch, lab_batch, boundary = load_data_and_label(
                session[0], session[-1], model_emb.prepare_input_test
            )  # use prepare_input_test for testing time
            val_feats.append(eve_batch)
            val_labels.append(lab_batch)
            val_sess.extend([session_id] * eve_batch.shape[0])
            val_boundaries.extend(boundary)

            eve2_batch, _, _ = load_data_and_label(
                session[1], session[-1], model_emb_sensors.prepare_input_test)
            val_feats2.append(eve2_batch)

            eve3_batch, _, _ = load_data_and_label(
                session[2], session[-1], model_emb_segment.prepare_input_test)
            val_feats3.append(eve3_batch)
        val_feats = np.concatenate(val_feats, axis=0)
        val_feats2 = np.concatenate(val_feats2, axis=0)
        val_feats3 = np.concatenate(val_feats3, axis=0)
        val_labels = np.concatenate(val_labels, axis=0)
        print("Shape of val_feats: ", val_feats.shape)

        # generate metadata.tsv for visualize embedding
        with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout:
            fout.write('id\tlabel\tsession_id\tstart\tend\n')
            for i in range(len(val_sess)):
                fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(
                    i, val_labels[i, 0], val_sess[i], val_boundaries[i][0],
                    val_boundaries[i][1]))

        #########################################################################

        # Start running the graph
        if cfg.gpu:
            os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu

        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        summary_writer = tf.summary.FileWriter(result_dir, sess.graph)

        with sess.as_default():

            sess.run(tf.global_variables_initializer())
            print("Restoring sensors model: %s" % cfg.sensors_path)
            restore_saver_sensors.restore(sess, cfg.sensors_path)
            print("Restoring segment model: %s" % cfg.segment_path)
            restore_saver_segment.restore(sess, cfg.segment_path)

            # load pretrain model, if needed
            if cfg.model_path:
                print("Restoring pretrained model: %s" % cfg.model_path)
                saver.restore(sess, cfg.model_path)

            ################## Training loop ##################
            epoch = -1
            while epoch < cfg.max_epochs - 1:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // batch_per_epoch

                # learning rate schedule, reference: "In defense of Triplet Loss"
                if epoch < cfg.static_epochs:
                    learning_rate = cfg.learning_rate
                else:
                    learning_rate = cfg.learning_rate * \
                            0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs))

                # prepare data for this epoch
                random.shuffle(train_set)

                paths = list(zip(*[iter(train_set)] * cfg.sess_per_batch))

                feat_paths = [[p[0] for p in path] for path in paths]
                feat2_paths = [[p[1] for p in path] for path in paths]
                feat3_paths = [[p[2] for p in path] for path in paths]
                label_paths = [[p[-1] for p in path] for path in paths]

                sess.run(train_sess_iterator.initializer,
                         feed_dict={
                             feat_paths_ph: feat_paths,
                             feat2_paths_ph: feat2_paths,
                             feat3_paths_ph: feat3_paths,
                             label_paths_ph: label_paths
                         })

                # for each epoch
                batch_count = 1
                while True:
                    try:
                        ##################### Data loading ########################
                        start_time = time.time()
                        eve, eve_sensors, eve_segment, lab, batch_sess = sess.run(
                            next_train)

                        # for memory concern, 1000 events are used in maximum
                        if eve.shape[0] > 1000:
                            idx = np.random.permutation(eve.shape[0])[:1000]
                            eve = eve[idx]
                            eve_sensors = eve_sensors[idx]
                            eve_segment = eve_segment[idx]
                            lab = lab[idx]
                            batch_sess = batch_sess[idx]
                        load_time = time.time() - start_time

                        ##################### Triplet selection #####################
                        start_time = time.time()
                        # for labeled sessions, use facenet sampling
                        eve_labeled = []
                        lab_labeled = []
                        for i in range(eve.shape[0]):
                            # FIXME: use decode again to get session_id str
                            if batch_sess[i, 0].decode() in labeled_session:
                                eve_labeled.append(eve[i])
                                lab_labeled.append(lab[i])

                        if len(eve_labeled):  # if labeled sessions exist
                            eve_labeled = np.stack(eve_labeled, axis=0)
                            lab_labeled = np.stack(lab_labeled, axis=0)

                            # Get the embeddings of all events
                            eve_embedding = np.zeros(
                                (eve_labeled.shape[0], cfg.emb_dim),
                                dtype='float32')
                            for start, end in zip(
                                    range(0, eve_labeled.shape[0],
                                          cfg.batch_size),
                                    range(
                                        cfg.batch_size,
                                        eve_labeled.shape[0] + cfg.batch_size,
                                        cfg.batch_size)):
                                end = min(end, eve_labeled.shape[0])
                                emb = sess.run(embedding,
                                               feed_dict={
                                                   input_ph:
                                                   eve_labeled[start:end],
                                                   dropout_ph: 1.0
                                               })
                                eve_embedding[start:end] = np.copy(emb)

                            # Second, sample triplets within sampled sessions
                            all_diff = utils.all_diffs(eve_embedding,
                                                       eve_embedding)
                            triplet_input_idx, active_count = utils.select_triplets_facenet(
                                lab_labeled,
                                utils.cdist(all_diff, metric=cfg.metric),
                                cfg.triplet_per_batch,
                                cfg.alpha,
                                num_negative=cfg.num_negative)

                            if len(triplet_input_idx) == 0:
                                triplet_input = eve_labeled[triplet_input_idx]

                        else:
                            active_count = -1

                        # for all sessions in the batch
                        perm_idx = np.random.permutation(eve.shape[0])
                        perm_idx = perm_idx[:min(3 * (len(perm_idx) // 3), 3 *
                                                 cfg.triplet_per_batch)]
                        mul_input = eve[perm_idx]

                        if len(eve_labeled) and triplet_input_idx is not None:
                            triplet_input = np.concatenate(
                                (triplet_input, mul_input), axis=0)
                        else:
                            triplet_input = mul_input
                        sensors_input = eve_sensors[perm_idx]
                        segment_input = eve_segment[perm_idx]

                        ##################### Start training  ########################

                        # supervised initialization
                        if epoch < cfg.multimodal_epochs:
                            if not len(eve_labeled
                                       ):  # if no labeled sessions exist
                                continue
                            err, mse_err, _, step, summ = sess.run(
                                [
                                    total_loss, MSE_loss, train_op,
                                    global_step, summary_op
                                ],
                                feed_dict={
                                    input_ph: triplet_input,
                                    input_sensors_ph: sensors_input,
                                    dropout_ph: cfg.keep_prob,
                                    lambda_mul_ph: 0.0,
                                    lr_ph: learning_rate
                                })
                        else:
                            print(triplet_input.shape)
                            err, mse_err1, mse_err2, _, step, summ = sess.run(
                                [
                                    total_loss, MSE_loss_sensors,
                                    MSE_loss_segment, train_op, global_step,
                                    summary_op
                                ],
                                feed_dict={
                                    input_ph: triplet_input,
                                    input_sensors_ph: sensors_input,
                                    input_segment_ph: segment_input,
                                    dropout_ph: cfg.keep_prob,
                                    lambda_mul_ph: cfg.lambda_multimodal,
                                    lr_ph: learning_rate
                                })
                        train_time = time.time() - start_time

                        print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tLoad time: %.3f\tTrain_time: %.3f\tLoss %.4f" % \
                                (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], load_time, train_time, err))

                        summary = tf.Summary(value=[
                            tf.Summary.Value(tag="train_loss",
                                             simple_value=err),
                            tf.Summary.Value(tag="active_count",
                                             simple_value=active_count),
                            tf.Summary.Value(
                                tag="triplet_num",
                                simple_value=(triplet_input.shape[0] -
                                              sensors_input.shape[0]) // 3),
                            tf.Summary.Value(tag="MSE_loss_sensors",
                                             simple_value=mse_err1),
                            tf.Summary.Value(tag="MSE_loss_segment",
                                             simple_value=mse_err2)
                        ])

                        summary_writer.add_summary(summary, step)
                        summary_writer.add_summary(summ, step)

                        batch_count += 1

                    except tf.errors.OutOfRangeError:
                        print("Epoch %d done!" % (epoch + 1))
                        break

                # validation on val_set
                print("Evaluating on validation set...")
                val_err1, val_err2, val_embeddings, _ = sess.run(
                    [MSE_loss_sensors, MSE_loss_segment, embedding, set_emb],
                    feed_dict={
                        input_ph: val_feats,
                        input_sensors_ph: val_feats2,
                        input_segment_ph: val_feats3,
                        dropout_ph: 1.0
                    })
                mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels)

                summary = tf.Summary(value=[
                    tf.Summary.Value(tag="Valiation mAP", simple_value=mAP),
                    tf.Summary.Value(tag="Validation [email protected]",
                                     simple_value=mPrec),
                    tf.Summary.Value(tag="Validation mse loss sensors",
                                     simple_value=val_err1),
                    tf.Summary.Value(tag="Validation mse loss segment",
                                     simple_value=val_err2)
                ])
                summary_writer.add_summary(summary, step)
                print("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" %
                      (epoch + 1, mAP, mPrec))

                # config for embedding visualization
                config = projector.ProjectorConfig()
                visual_embedding = config.embeddings.add()
                visual_embedding.tensor_name = emb_var.name
                visual_embedding.metadata_path = os.path.join(
                    result_dir, 'metadata_val.tsv')
                projector.visualize_embeddings(summary_writer, config)

                # save model
                saver.save(sess,
                           os.path.join(result_dir, cfg.name + '.ckpt'),
                           global_step=step)
コード例 #3
0
def select_triplets(lab,
                    eve_embedding,
                    triplet_per_batch,
                    alpha=0.2,
                    num_negative=3,
                    metric="squaredeuclidean"):
    """
    Select the triplets for evaluation, some of them are simple, some of them are hard negative

    Arguments:
    eve -- array of event features, [N, n_seg, (dims)]
    lab -- array of labels, [N,]
    eve_embedding -- array of event embeddings, [N, emb_dim]
    triplet_per_batch -- int
    alpha -- float, margin
    num_negative -- number of negative samples per anchor-positive pairs
    metric -- metric to calculate distance
    """

    # get distance for all pairs
    all_diff = utils.all_diffs(eve_embedding, eve_embedding)
    all_dist = utils.cdist(all_diff, metric=metric)

    idx_dict = {}
    for i, l in enumerate(lab):
        l = int(l)
        if l not in idx_dict:
            idx_dict[l] = [i]
        else:
            idx_dict[l].append(i)
    for key in idx_dict:
        random.shuffle(idx_dict[key])

    # create iterators for each anchor-positive pair
    foreground_keys = [key for key in idx_dict.keys() if not key == 0]
    foreground_dict = {}
    for key in foreground_keys:
        foreground_dict[key] = itertools.permutations(idx_dict[key], 2)

    triplet_input_idx = []
    all_neg_count = []  # for monitoring active count
    while (len(triplet_input_idx)) < triplet_per_batch * 3:
        keys = list(foreground_dict.keys())
        if len(keys) == 0:
            break

        for key in keys:
            try:
                an_idx, pos_idx = foreground_dict[key].__next__()
            except:
                # remove the key to prevent infinite loop
                del foreground_dict[key]
                continue

            pos_dist = all_dist[an_idx, pos_idx]
            neg_dist = np.copy(
                all_dist[an_idx]
            )  # important to make a copy, otherwise is reference
            neg_dist[idx_dict[key]] = np.NaN

            # hard ones
            all_neg = np.where(
                np.logical_and(neg_dist - pos_dist < alpha,
                               pos_dist < neg_dist))[0]
            if len(all_neg) > 0:
                neg_idx = all_neg[np.random.randint(len(all_neg))]
                triplet_input_idx.extend([an_idx, pos_idx, neg_idx])

                # simple ones
                all_neg = np.where(neg_dist - pos_dist > alpha)[0]
                neg_idx = all_neg[np.random.randint(len(all_neg))]
                triplet_input_idx.extend([an_idx, pos_idx, neg_idx])

    if len(triplet_input_idx) > 0:
        return triplet_input_idx, np.mean(all_neg_count)
    else:
        return None, None
コード例 #4
0
def main():

    cfg = TrainConfig().parse()
    print(cfg.name)
    result_dir = os.path.join(
        cfg.result_root,
        cfg.name + '_' + datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S'))
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    utils.write_configure_to_file(cfg, result_dir)
    np.random.seed(seed=cfg.seed)

    # prepare dataset
    feat_train = np.load('/mnt/work/CUB_200_2011/data/feat_train.npy')
    val_feats = np.load('/mnt/work/CUB_200_2011/data/feat_test.npy')
    label_train = np.load('/mnt/work/CUB_200_2011/data/label_train.npy')
    label_train -= 1  # make labels start from 0
    val_labels = np.load('/mnt/work/CUB_200_2011/data/label_test.npy')

    class_idx_dict = {}
    for i, l in enumerate(label_train):
        l = int(l)
        if l not in class_idx_dict:
            class_idx_dict[l] = [i]
        else:
            class_idx_dict[l].append(i)
    C = len(list(class_idx_dict.keys()))

    val_triplet_idx = select_triplets_random(val_labels, 1000)

    # generate metadata.tsv for visualize embedding
    with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout:
        for l in val_labels:
            fout.write('{}\n'.format(int(l)))

    # construct the graph
    with tf.Graph().as_default():
        tf.set_random_seed(cfg.seed)
        global_step = tf.Variable(0, trainable=False)
        lr_ph = tf.placeholder(tf.float32, name='learning_rate')

        # load backbone model
        model_emb = networks.CUBLayer(n_input=1024, n_output=cfg.emb_dim)
        #model_emb = networks.OutputLayer(n_input=1024, n_output=cfg.emb_dim)

        # get the embedding
        input_ph = tf.placeholder(tf.float32, shape=[None, 1024])
        dropout_ph = tf.placeholder(tf.float32, shape=[])
        model_emb.forward(input_ph, dropout_ph)
        if cfg.normalized:
            embedding = tf.nn.l2_normalize(model_emb.logits,
                                           axis=-1,
                                           epsilon=1e-10)
        else:
            embedding = model_emb.logits

        # variable for visualizing the embeddings
        emb_var = tf.Variable([0.0], name='embeddings')
        set_emb = tf.assign(emb_var, embedding, validate_shape=False)

        # calculated for monitoring all-pair embedding distance
        #        diffs = utils.all_diffs_tf(embedding, embedding)
        #        all_dist = utils.cdist_tf(diffs)
        #        tf.summary.histogram('embedding_dists', all_dist)

        # split embedding into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embedding, [-1, 3, cfg.emb_dim]), 3, 1)
        metric_loss = networks.triplet_loss(anchor, positive, negative,
                                            cfg.alpha)

        regularization_loss = tf.reduce_sum(
            tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
        total_loss = metric_loss + regularization_loss * cfg.lambda_l2

        tf.summary.scalar('learning_rate', lr_ph)
        train_op = utils.optimize(total_loss, global_step, cfg.optimizer,
                                  lr_ph, tf.global_variables())

        saver = tf.train.Saver(max_to_keep=10)

        summary_op = tf.summary.merge_all()

        # Start running the graph
        if cfg.gpu:
            os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu

        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        summary_writer = tf.summary.FileWriter(result_dir, sess.graph)

        with sess.as_default():

            sess.run(tf.global_variables_initializer())

            ################## Training loop ##################
            for epoch in range(cfg.max_epochs):

                # learning rate schedule, reference: "In defense of Triplet Loss"
                if epoch < cfg.static_epochs:
                    learning_rate = cfg.learning_rate
                else:
                    learning_rate = cfg.learning_rate * \
                            0.001**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs))

                # sample images
                class_in_batch = set()
                idx_batch = np.array([], dtype=np.int32)
                while len(idx_batch) < cfg.batch_size:
                    sampled_class = np.random.choice(
                        list(class_idx_dict.keys()))
                    if not sampled_class in class_in_batch:
                        class_in_batch.add(sampled_class)
                        subsample_size = np.random.choice(range(5, 11))
                        subsample = np.random.permutation(
                            class_idx_dict[sampled_class])[:subsample_size]
                        idx_batch = np.append(idx_batch, subsample)
                idx_batch = idx_batch[:cfg.batch_size]

                feat_batch = feat_train[idx_batch]
                lab_batch = label_train[idx_batch]

                emb = sess.run(embedding,
                               feed_dict={
                                   input_ph: feat_batch,
                                   dropout_ph: 1.0
                               })

                # get distance for all pairs
                all_diff = utils.all_diffs(emb, emb)
                triplet_input_idx, active_count = select_triplets_facenet(
                    lab_batch,
                    utils.cdist(all_diff, metric=cfg.metric),
                    cfg.triplet_per_batch,
                    cfg.alpha,
                    num_negative=cfg.num_negative)

                if triplet_input_idx is not None:
                    triplet_input = feat_batch[triplet_input_idx]

                    # perform training on the selected triplets
                    err, _, step, summ = sess.run(
                        [total_loss, train_op, global_step, summary_op],
                        feed_dict={
                            input_ph: triplet_input,
                            dropout_ph: cfg.keep_prob,
                            lr_ph: learning_rate
                        })

                    print ("%s\tEpoch: %d\tImages num: %d\tTriplet num: %d\tLoss %.4f" % \
                            (cfg.name, epoch+1, feat_batch.shape[0], triplet_input.shape[0]//3, err))

                    summary = tf.Summary(value=[
                        tf.Summary.Value(tag="train_loss", simple_value=err),
                        tf.Summary.Value(tag="active_count",
                                         simple_value=active_count),
                        tf.Summary.Value(tag="images_num",
                                         simple_value=feat_batch.shape[0]),
                        tf.Summary.Value(tag="triplet_num",
                                         simple_value=triplet_input.shape[0] //
                                         3)
                    ])
                    summary_writer.add_summary(summary, step)
                    summary_writer.add_summary(summ, step)

                # validation on val_set
                if (epoch + 1) % 100 == 0:
                    print("Evaluating on validation set...")
                    val_err = sess.run(total_loss,
                                       feed_dict={
                                           input_ph:
                                           val_feats[val_triplet_idx],
                                           dropout_ph: 1.0
                                       })

                    summary = tf.Summary(value=[
                        tf.Summary.Value(tag="Valiation loss",
                                         simple_value=val_err),
                    ])
                    print("Epoch: [%d]\tloss: %.4f" % (epoch + 1, val_err))

                    if (epoch + 1) % 1000 == 0:
                        val_embeddings, _ = sess.run([embedding, set_emb],
                                                     feed_dict={
                                                         input_ph: val_feats,
                                                         dropout_ph: 1.0
                                                     })
                        mAP, mPrec, recall = utils.evaluate_simple(
                            val_embeddings, val_labels)
                        summary = tf.Summary(value=[
                            tf.Summary.Value(tag="Valiation mAP",
                                             simple_value=mAP),
                            tf.Summary.Value(tag="Validation Recall@1",
                                             simple_value=recall),
                            tf.Summary.Value(tag="Validation [email protected]",
                                             simple_value=mPrec)
                        ])
                        print("Epoch: [%d]\tmAP: %.4f\trecall: %.4f" %
                              (epoch + 1, mAP, recall))

                        # config for embedding visualization
                        config = projector.ProjectorConfig()
                        visual_embedding = config.embeddings.add()
                        visual_embedding.tensor_name = emb_var.name
                        visual_embedding.metadata_path = os.path.join(
                            result_dir, 'metadata_val.tsv')
                        projector.visualize_embeddings(summary_writer, config)

                    summary_writer.add_summary(summary, step)

                    # save model
                    saver.save(sess,
                               os.path.join(result_dir, cfg.name + '.ckpt'),
                               global_step=step)
コード例 #5
0
def main():

    cfg = TrainConfig().parse()
    print (cfg.name)
    result_dir = os.path.join(cfg.result_root, 
            cfg.name+'_'+datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S'))
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    utils.write_configure_to_file(cfg, result_dir)
    np.random.seed(seed=cfg.seed)

    # prepare dataset
    train_session = cfg.train_session
    train_set = prepare_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root)
    train_set = train_set[:cfg.label_num]
    batch_per_epoch = len(train_set)//cfg.sess_per_batch

    val_session = cfg.val_session
    val_set = prepare_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root)


    # construct the graph
    with tf.Graph().as_default():
        tf.set_random_seed(cfg.seed)
        global_step = tf.Variable(0, trainable=False)
        lr_ph = tf.placeholder(tf.float32, name='learning_rate')

        # load backbone model
        if cfg.network == "tsn":
            model_emb = networks.TSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim)
        elif cfg.network == "rtsn":
            model_emb = networks.RTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim)
        elif cfg.network == "convtsn":
            model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim)
        elif cfg.network == "convrtsn":
            model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim, n_h=cfg.n_h, n_w=cfg.n_w, n_C=cfg.n_C, n_input=cfg.n_input)
        elif cfg.network == "convbirtsn":
            model_emb = networks.ConvBiRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim)
        else:
            raise NotImplementedError

        # get the embedding
        if cfg.feat == "sensors" or cfg.feat == "segment":
            input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None])
        elif cfg.feat == "resnet" or cfg.feat == "segment_down":
            input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None, None, None])
        dropout_ph = tf.placeholder(tf.float32, shape=[])
        model_emb.forward(input_ph, dropout_ph)
        if cfg.normalized:
            embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10)
        else:
            embedding = model_emb.hidden

        # variable for visualizing the embeddings
        emb_var = tf.Variable([0.0], name='embeddings')
        set_emb = tf.assign(emb_var, embedding, validate_shape=False)

        # calculated for monitoring all-pair embedding distance
        diffs = utils.all_diffs_tf(embedding, embedding)
        all_dist = utils.cdist_tf(diffs)
        tf.summary.histogram('embedding_dists', all_dist)

        # split embedding into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(tf.reshape(embedding, [-1,3,cfg.emb_dim]), 3, 1)
        metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha)

        regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
        total_loss = metric_loss + regularization_loss * cfg.lambda_l2

        tf.summary.scalar('learning_rate', lr_ph)
        train_op = utils.optimize(total_loss, global_step, cfg.optimizer,
                lr_ph, tf.global_variables())

        saver = tf.train.Saver(max_to_keep=10)

        summary_op = tf.summary.merge_all()

        # session iterator for session sampling
        feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch])
        label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch])
        train_data = session_generator(feat_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=model_emb.prepare_input)
        train_sess_iterator = train_data.make_initializable_iterator()
        next_train = train_sess_iterator.get_next()

        # prepare validation data
        val_sess = []
        val_feats = []
        val_labels = []
        val_boundaries = []
        for session in val_set:
            session_id = os.path.basename(session[1]).split('_')[0]
            eve_batch, lab_batch, boundary = load_data_and_label(session[0], session[-1], model_emb.prepare_input_test)    # use prepare_input_test for testing time
            val_feats.append(eve_batch)
            val_labels.append(lab_batch)
            val_sess.extend([session_id]*eve_batch.shape[0])
            val_boundaries.extend(boundary)
        val_feats = np.concatenate(val_feats, axis=0)
        val_labels = np.concatenate(val_labels, axis=0)
        print ("Shape of val_feats: ", val_feats.shape)

        # generate metadata.tsv for visualize embedding
        with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout:
            fout.write('id\tlabel\tsession_id\tstart\tend\n')
            for i in range(len(val_sess)):
                fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(i, val_labels[i,0], val_sess[i],
                                            val_boundaries[i][0], val_boundaries[i][1]))


        # Start running the graph
        if cfg.gpu:
            os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu

        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        summary_writer = tf.summary.FileWriter(result_dir, sess.graph)

        with sess.as_default():

            sess.run(tf.global_variables_initializer())

            # load pretrain model, if needed
            if cfg.model_path:
                print ("Restoring pretrained model: %s" % cfg.model_path)
                saver.restore(sess, cfg.model_path)

            ################## Training loop ##################
            epoch = -1
            while epoch < cfg.max_epochs-1:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // batch_per_epoch

                # learning rate schedule, reference: "In defense of Triplet Loss"
                if epoch < cfg.static_epochs:
                    learning_rate = cfg.learning_rate
                else:
                    learning_rate = cfg.learning_rate * \
                            0.001**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs))

                # prepare data for this epoch
                random.shuffle(train_set)

                feat_paths = [path[0] for path in train_set]
                label_paths = [path[1] for path in train_set]
                # reshape a list to list of list
                # interesting hacky code from: https://stackoverflow.com/questions/10124751/convert-a-flat-list-to-list-of-list-in-python
                feat_paths = list(zip(*[iter(feat_paths)]*cfg.sess_per_batch))
                label_paths = list(zip(*[iter(label_paths)]*cfg.sess_per_batch))

                sess.run(train_sess_iterator.initializer, feed_dict={feat_paths_ph: feat_paths,
                  label_paths_ph: label_paths})

                # for each epoch
                batch_count = 1
                while True:
                    try:
                        # Hierarchical sampling (same as fast rcnn)
                        start_time_select = time.time()

                        # First, sample sessions for a batch
                        eve, se, lab = sess.run(next_train)
                        # for memory concern, 1000 events are used in maximum
                        if eve.shape[0] > 1000:
                            idx = np.random.permutation(eve.shape[0])[:1000]
                            eve = eve[idx]
                            se = se[idx]
                            lab = lab[idx]

                        select_time1 = time.time() - start_time_select

                        # Get the embeddings of all events
                        eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32')
                        for start, end in zip(range(0, eve.shape[0], cfg.batch_size),
                                            range(cfg.batch_size, eve.shape[0]+cfg.batch_size, cfg.batch_size)):
                            end = min(end, eve.shape[0])
                            emb = sess.run(embedding, feed_dict={input_ph: eve[start:end], dropout_ph: 1.0})
                            eve_embedding[start:end] = emb

                        # Second, sample triplets within sampled sessions
                        if cfg.triplet_select == 'random':
                            triplet_input = select_triplets_random(eve,lab,cfg.triplet_per_batch)
                            negative_count = 0
                        elif cfg.triplet_select == 'facenet':
                            # get distance for all pairs
                            all_diff = utils.all_diffs(eve_embedding, eve_embedding)
                            triplet_input_idx, active_count = utils.select_triplets_facenet(lab,utils.cdist(all_diff,metric=cfg.metric),cfg.triplet_per_batch,cfg.alpha,num_negative=cfg.num_negative)
                        else:
                            raise NotImplementedError

                        select_time2 = time.time()-start_time_select-select_time1

                        if (triplet_input_idx) == 0:
                            continue
                        triplet_input = eve[triplet_input_idx]

                        start_time_train = time.time()
                        # perform training on the selected triplets
                        err, _, step, summ = sess.run([total_loss, train_op, global_step, summary_op],
                                feed_dict = {input_ph: triplet_input,
                                            dropout_ph: cfg.keep_prob,
                                            lr_ph: learning_rate})

                        train_time = time.time() - start_time_train
                        print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tSelect_time1: %.3f\tSelect_time2: %.3f\tTrain_time: %.3f\tLoss %.4f" % \
                                (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_input.shape[0]//3, select_time1, select_time2, train_time, err))

                        summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=err),
                            tf.Summary.Value(tag="active_count", simple_value=active_count),
                            tf.Summary.Value(tag="triplet_num", simple_value=triplet_input.shape[0]//3)])
                        summary_writer.add_summary(summary, step)
                        summary_writer.add_summary(summ, step)

                        batch_count += 1
                    
                    except tf.errors.OutOfRangeError:
                        print ("Epoch %d done!" % (epoch+1))
                        break

                # validation on val_set
                print ("Evaluating on validation set...")
                val_embeddings, _ = sess.run([embedding, set_emb], feed_dict={input_ph: val_feats, dropout_ph: 1.0})
                mAP, mPrec, recall = utils.evaluate_simple(val_embeddings, val_labels)
                summary = tf.Summary(value=[tf.Summary.Value(tag="Valiation mAP", simple_value=mAP),
                                            tf.Summary.Value(tag="Validation Recall@1", simple_value=recall),
                                            tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec)])
                summary_writer.add_summary(summary, step)
                print ("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch+1,mAP,mPrec))

                # config for embedding visualization
                config = projector.ProjectorConfig()
                visual_embedding = config.embeddings.add()
                visual_embedding.tensor_name = emb_var.name
                visual_embedding.metadata_path = os.path.join(result_dir, 'metadata_val.tsv')
                projector.visualize_embeddings(summary_writer, config)

                # save model
                saver.save(sess, os.path.join(result_dir, cfg.name+'.ckpt'), global_step=step)
コード例 #6
0
ファイル: dcca.py プロジェクト: xyang35/multimodal_similarity
def main():

    cfg = TrainConfig().parse()
    print (cfg.name)
    result_dir = os.path.join(cfg.result_root, 
            cfg.name+'_'+datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S'))
    if not os.path.isdir(result_dir):
        os.makedirs(result_dir)
    utils.write_configure_to_file(cfg, result_dir)
    np.random.seed(seed=cfg.seed)

    # prepare dataset
    train_session = cfg.train_session
    train_set = prepare_multimodal_dataset(cfg.feature_root, train_session, cfg.feat, cfg.label_root)
    train_set = train_set[:cfg.label_num]
    batch_per_epoch = len(train_set)//cfg.sess_per_batch

    val_session = cfg.val_session
    val_set = prepare_multimodal_dataset(cfg.feature_root, val_session, cfg.feat, cfg.label_root)


    # construct the graph
    with tf.Graph().as_default():
        tf.set_random_seed(cfg.seed)
        global_step = tf.Variable(0, trainable=False)
        lr_ph = tf.placeholder(tf.float32, name='learning_rate')

        
        ####################### Load models here ########################

        with tf.variable_scope("modality_core"):
            # load backbone model
            if cfg.network == "convtsn":
                model_emb = networks.ConvTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim)
            elif cfg.network == "convrtsn":
                model_emb = networks.ConvRTSN(n_seg=cfg.num_seg, emb_dim=cfg.emb_dim)
            else:
                raise NotImplementedError

            input_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, None, None, None])
            dropout_ph = tf.placeholder(tf.float32, shape=[])
            model_emb.forward(input_ph, dropout_ph)    # for lstm has variable scope

        with tf.variable_scope("modality_sensors"):
            sensors_emb_dim = 32
            model_emb_sensors = networks.RTSN(n_seg=cfg.num_seg, emb_dim=sensors_emb_dim)

            input_sensors_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 8])
            model_emb_sensors.forward(input_sensors_ph, dropout_ph)

            var_list = {}
            for v in tf.global_variables():
                if v.op.name.startswith("modality_sensors"):
                    var_list[v.op.name.replace("modality_sensors/","")] = v
            restore_saver_sensors = tf.train.Saver(var_list)


        with tf.variable_scope("modality_segment"):
            segment_emb_dim = 32
            model_emb_segment = networks.RTSN(n_seg=cfg.num_seg, emb_dim=segment_emb_dim, n_input=357)

            input_segment_ph = tf.placeholder(tf.float32, shape=[None, cfg.num_seg, 357])
            model_emb_segment.forward(input_segment_ph, dropout_ph)

            var_list = {}
            for v in tf.global_variables():
                if v.op.name.startswith("modality_segment"):
                    var_list[v.op.name.replace("modality_segment/","")] = v
            restore_saver_segment = tf.train.Saver(var_list)

        ############################# Forward Pass #############################


        # Core branch
        if cfg.normalized:
            embedding = tf.nn.l2_normalize(model_emb.hidden, axis=-1, epsilon=1e-10)
            embedding_sensors = tf.nn.l2_normalize(model_emb_sensors.hidden, axis=-1, epsilon=1e-10)
            embedding_hal_sensors = tf.nn.l2_normalize(hal_emb_sensors.hidden, axis=-1, epsilon=1e-10)
            embedding_segment = tf.nn.l2_normalize(model_emb_segment.hidden, axis=-1, epsilon=1e-10)
            embedding_hal_segment = tf.nn.l2_normalize(hal_emb_segment.hidden, axis=-1, epsilon=1e-10)
        else:
            embedding = model_emb.hidden
            embedding_sensors = model_emb_sensors.hidden
            embedding_hal_sensors = hal_emb_sensors.hidden
            embedding_segment = model_emb_segment.hidden
            embedding_hal_segment = hal_emb_segment.hidden

        # variable for visualizing the embeddings
        emb_var = tf.Variable([0.0], name='embeddings')
        set_emb = tf.assign(emb_var, embedding, validate_shape=False)

        # calculated for monitoring all-pair embedding distance
        diffs = utils.all_diffs_tf(embedding, embedding)
        all_dist = utils.cdist_tf(diffs)
        tf.summary.histogram('embedding_dists', all_dist)

        # split embedding into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(tf.reshape(embedding, [-1,3,cfg.emb_dim]), 3, 1)
        anc_sensors, pos_sensors, neg_sensors = tf.unstack(tf.reshape(embedding_sensors, [-1,3,sensors_emb_dim]), 3, 1)
        anc_hal_sensors, pos_hal_sensors, neg_hal_sensors = tf.unstack(tf.reshape(embedding_hal_sensors, [-1,3,sensors_emb_dim]), 3, 1)
        anc_segment, pos_segment, neg_segment = tf.unstack(tf.reshape(embedding_segment, [-1,3,segment_emb_dim]), 3, 1)
        anc_hal_segment, pos_hal_segment, neg_hal_segment = tf.unstack(tf.reshape(embedding_hal_segment, [-1,3,segment_emb_dim]), 3, 1)

        # a fusion embedding
        anc_fused = tf.concat((anchor, anc_hal_sensors, anc_hal_segment), axis=1)
        pos_fused = tf.concat((positive, pos_hal_sensors, anc_hal_segment), axis=1)
        neg_fused = tf.concat((negative, neg_hal_sensors, anc_hal_segment), axis=1)

        ############################# Calculate loss #############################

        # triplet loss
        metric_loss = networks.triplet_loss(anchor, positive, negative, cfg.alpha) + \
                      networks.triplet_loss(anc_sensors, pos_sensors, neg_sensors, cfg.alpha) + \
                      networks.triplet_loss(anc_hal_sensors, pos_hal_sensors, neg_hal_sensors, cfg.alpha) + \
                      networks.triplet_loss(anc_segment, pos_segment, neg_segment, cfg.alpha) + \
                      networks.triplet_loss(anc_hal_segment, pos_hal_segment, neg_hal_segment, cfg.alpha) + \
                      networks.triplet_loss(anc_fused, pos_fused, neg_fused, cfg.alpha)

        # hallucination loss (regression loss)
        hal_loss_sensors = tf.nn.l2_loss(embedding_sensors - embedding_hal_sensors)
        hal_loss_segment = tf.nn.l2_loss(embedding_segment - embedding_hal_segment)
        hal_loss = hal_loss_sensors + hal_loss_segment

        regularization_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
        # use lambda_multimodal for hal_loss
        total_loss = metric_loss + cfg.lambda_multimodal * hal_loss + regularization_loss * cfg.lambda_l2

        tf.summary.scalar('learning_rate', lr_ph)
        train_op = utils.optimize(total_loss, global_step, cfg.optimizer,
                                           lr_ph, tf.global_variables())

        saver = tf.train.Saver(max_to_keep=10)
        summary_op = tf.summary.merge_all()    # not logging histogram of variables because it will cause problem when only unimodal_train_op is called

        #########################################################################

        # session iterator for session sampling
        feat_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch])
        feat2_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch])
        feat3_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch])
        label_paths_ph = tf.placeholder(tf.string, shape=[None, cfg.sess_per_batch])
        train_data = multimodal_session_generator(feat_paths_ph, feat2_paths_ph, feat3_paths_ph, label_paths_ph, sess_per_batch=cfg.sess_per_batch, num_threads=2, shuffled=False, preprocess_func=[model_emb.prepare_input, model_emb_sensors.prepare_input, model_emb_segment.prepare_input])
        train_sess_iterator = train_data.make_initializable_iterator()
        next_train = train_sess_iterator.get_next()

        # prepare validation data
        val_sess = []
        val_feats = []
        val_feats2 = []
        val_feats3 = []
        val_labels = []
        val_boundaries = []
        for session in val_set:
            session_id = os.path.basename(session[1]).split('_')[0]
            eve_batch, lab_batch, boundary = load_data_and_label(session[0], session[-1], model_emb.prepare_input_test)    # use prepare_input_test for testing time
            val_feats.append(eve_batch)
            val_labels.append(lab_batch)
            val_sess.extend([session_id]*eve_batch.shape[0])
            val_boundaries.extend(boundary)

            eve2_batch, _,_ = load_data_and_label(session[1], session[-1], model_emb_sensors.prepare_input_test)
            val_feats2.append(eve2_batch)

            eve3_batch, _,_ = load_data_and_label(session[2], session[-1], model_emb_segment.prepare_input_test)
            val_feats3.append(eve3_batch)
        val_feats = np.concatenate(val_feats, axis=0)
        val_feats2 = np.concatenate(val_feats2, axis=0)
        val_feats3 = np.concatenate(val_feats3, axis=0)
        val_labels = np.concatenate(val_labels, axis=0)
        print ("Shape of val_feats: ", val_feats.shape)

        # generate metadata.tsv for visualize embedding
        with open(os.path.join(result_dir, 'metadata_val.tsv'), 'w') as fout:
            fout.write('id\tlabel\tsession_id\tstart\tend\n')
            for i in range(len(val_sess)):
                fout.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(i, val_labels[i,0], val_sess[i],
                                            val_boundaries[i][0], val_boundaries[i][1]))

        #########################################################################


        # Start running the graph
        if cfg.gpu:
            os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu

        gpu_options = tf.GPUOptions(allow_growth=True)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        summary_writer = tf.summary.FileWriter(result_dir, sess.graph)

        with sess.as_default():

            sess.run(tf.global_variables_initializer())

            print ("Restoring sensors model: %s" % cfg.sensors_path)
            restore_saver_sensors.restore(sess, cfg.sensors_path)
            print ("Restoring segment model: %s" % cfg.segment_path)
            restore_saver_segment.restore(sess, cfg.segment_path)

            # load pretrain model, if needed
            if cfg.model_path:
                print ("Restoring pretrained model: %s" % cfg.model_path)
                saver.restore(sess, cfg.model_path)


            ################## Training loop ##################
            epoch = -1
            while epoch < cfg.max_epochs-1:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // batch_per_epoch

                # learning rate schedule, reference: "In defense of Triplet Loss"
                if epoch < cfg.static_epochs:
                    learning_rate = cfg.learning_rate
                else:
                    learning_rate = cfg.learning_rate * \
                            0.01**((epoch-cfg.static_epochs)/(cfg.max_epochs-cfg.static_epochs))

                # prepare data for this epoch
                random.shuffle(train_set)

                paths = list(zip(*[iter(train_set)]*cfg.sess_per_batch))

                feat_paths = [[p[0] for p in path] for path in paths]
                feat2_paths = [[p[1] for p in path] for path in paths]
                feat3_paths = [[p[2] for p in path] for path in paths]
                label_paths = [[p[-1] for p in path] for path in paths]

                sess.run(train_sess_iterator.initializer, feed_dict={feat_paths_ph: feat_paths,
                  feat2_paths_ph: feat2_paths,
                  feat3_paths_ph: feat3_paths,
                  label_paths_ph: label_paths})

                # for each epoch
                batch_count = 1
                while True:
                    try:
                        ##################### Data loading ########################
                        start_time = time.time()
                        eve, eve_sensors, eve_segment, lab, batch_sess = sess.run(next_train)
                        load_time = time.time() - start_time
    
                        ##################### Triplet selection #####################
                        start_time = time.time()
                        # Get the embeddings of all events
                        eve_embedding = np.zeros((eve.shape[0], cfg.emb_dim), dtype='float32')
                        for start, end in zip(range(0, eve.shape[0], cfg.batch_size),
                                            range(cfg.batch_size, eve.shape[0]+cfg.batch_size, cfg.batch_size)):
                            end = min(end, eve.shape[0])
                            emb = sess.run(embedding, feed_dict={input_ph: eve[start:end], dropout_ph: 1.0})
                            eve_embedding[start:end] = np.copy(emb)
    
                        # sample triplets within sampled sessions
                        all_diff = utils.all_diffs(eve_embedding, eve_embedding)
                        triplet_input_idx, active_count = utils.select_triplets_facenet(lab,utils.cdist(all_diff,metric=cfg.metric),cfg.triplet_per_batch,cfg.alpha,num_negative=cfg.num_negative)
                        if triplet_input_idx is None:
                            continue
                        
                        triplet_input = eve[triplet_input_idx]
                        sensors_input = eve_sensors[triplet_input_idx]
                        segment_input = eve_segment[triplet_input_idx]

                        select_time = time.time() - start_time

                        if len(triplet_input.shape) > 5:    # debugging
                            pdb.set_trace()
    
                        ##################### Start training  ########################
    
                        err, metric_err, hal_err, _, step, summ = sess.run(
                                [total_loss, metric_loss, hal_loss, train_op, global_step, summary_op],
                                feed_dict = {input_ph: triplet_input,
                                             input_sensors_ph: sensors_input,
                                             input_segment_ph: segment_input,
                                             dropout_ph: cfg.keep_prob,
                                             lr_ph: learning_rate})
    
                        print ("%s\tEpoch: [%d][%d/%d]\tEvent num: %d\tTriplet num: %d\tLoad time: %.3f\tSelect time: %.3f\tMetric Loss %.4f\tHal Loss %.4f" % \
                                (cfg.name, epoch+1, batch_count, batch_per_epoch, eve.shape[0], triplet_input.shape[0]//3, load_time, select_time, metric_err, hal_err))
    
                        summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=err),
                                    tf.Summary.Value(tag="active_count", simple_value=active_count),
                                    tf.Summary.Value(tag="metric_loss", simple_value=metric_err),
                                    tf.Summary.Value(tag="hallucination_loss", simple_value=hal_err)])
    
                        summary_writer.add_summary(summary, step)
                        summary_writer.add_summary(summ, step)

                        batch_count += 1
                    
                    except tf.errors.OutOfRangeError:
                        print ("Epoch %d done!" % (epoch+1))
                        break

                # validation on val_set
                print ("Evaluating on validation set...")
                val_embeddings, hal_err, _ = sess.run([embedding, hal_loss, set_emb],
                                                feed_dict = {input_ph: val_feats,
                                                             input_sensors_ph: val_feats2,
                                                             input_segment_ph: val_feats3,
                                                             dropout_ph: 1.0})
                mAP, mPrec = utils.evaluate_simple(val_embeddings, val_labels)

                summary = tf.Summary(value=[tf.Summary.Value(tag="Valiation mAP", simple_value=mAP),
                                            tf.Summary.Value(tag="Validation [email protected]", simple_value=mPrec),
                                            tf.Summary.Value(tag="Validation hal loss", simple_value=hal_err)])
                summary_writer.add_summary(summary, step)
                print ("Epoch: [%d]\tmAP: %.4f\tmPrec: %.4f" % (epoch+1,mAP,mPrec))

                # config for embedding visualization
                config = projector.ProjectorConfig()
                visual_embedding = config.embeddings.add()
                visual_embedding.tensor_name = emb_var.name
                visual_embedding.metadata_path = os.path.join(result_dir, 'metadata_val.tsv')
                projector.visualize_embeddings(summary_writer, config)

                # save model
                saver.save(sess, os.path.join(result_dir, cfg.name+'.ckpt'), global_step=step)
コード例 #7
0
def select_triplets_facenet(lab,
                            eve_embedding,
                            triplet_per_batch,
                            alpha=0.2,
                            num_negative=3,
                            metric="squaredeuclidean"):
    """
    Select the triplets for training
    1. Sample anchor-positive pair (try to balance imbalanced classes)
    2. Semi-hard negative mining used in facenet

    Arguments:
    lab -- array of labels, [N,]
    eve_embedding -- array of event embeddings, [N, emb_dim]
    triplet_per_batch -- int
    alpha -- float, margin
    num_negative -- number of negative samples per anchor-positive pairs
    metric -- metric to calculate distance
    """

    # get distance for all pairs
    all_diff = utils.all_diffs(eve_embedding, eve_embedding)
    all_dist = utils.cdist(all_diff, metric=metric)

    idx_dict = {}
    for i, l in enumerate(lab):
        l = int(l)
        if l not in idx_dict:
            idx_dict[l] = [i]
        else:
            idx_dict[l].append(i)
    for key in idx_dict:
        random.shuffle(idx_dict[key])

    # create iterators for each anchor-positive pair
    foreground_keys = [key for key in idx_dict.keys() if not key == 0]
    foreground_dict = {}
    for key in foreground_keys:
        foreground_dict[key] = itertools.permutations(idx_dict[key], 2)

    triplet_input_idx = []
    all_neg_count = []  # for monitoring active count
    while (len(triplet_input_idx)) < triplet_per_batch * 3:
        keys = list(foreground_dict.keys())
        if len(keys) == 0:
            break

        for key in keys:
            try:
                an_idx, pos_idx = foreground_dict[key].__next__()
            except:
                # remove the key to prevent infinite loop
                del foreground_dict[key]
                continue

            pos_dist = all_dist[an_idx, pos_idx]
            neg_dist = np.copy(
                all_dist[an_idx]
            )  # important to make a copy, otherwise is reference
            neg_dist[idx_dict[key]] = np.NaN

            all_neg = np.where(
                np.logical_and(neg_dist - pos_dist < alpha,
                               pos_dist < neg_dist))[0]
            all_neg_count.append(len(all_neg))

            # continue if no proper negtive sample
            if len(all_neg) > 0:
                for i in range(num_negative):
                    neg_idx = all_neg[np.random.randint(len(all_neg))]

                    triplet_input_idx.extend([an_idx, pos_idx, neg_idx])
                    #triplet_input.append(np.expand_dims(eve[an_idx],0))
                    #triplet_input.append(np.expand_dims(eve[pos_idx],0))
                    #triplet_input.append(np.expand_dims(eve[neg_idx],0))

    if len(triplet_input) > 0:
        return triplet_input_idx, np.mean(all_neg_count)


#        return np.concatenate(triplet_input, axis=0), np.mean(all_neg_count)
    else:
        return None, None