コード例 #1
0
ファイル: test.py プロジェクト: zhangqizky/baselinev1_2
def main():
    #model = double_stream_model_12()
    #model.load_weights("checkpoints/"+"doublestream"+"_model_weights.h5")
    from keras.applications.mobilenet import preprocess_input
    base_model = MobileNet(weights='imagenet',include_top=False,input_shape=(HEIGHT,WIDTH,3))
    preprocessing_function = preprocess_input
    class_list_file = "checkpoints/MobileNet_class_list.txt"
    class_list = utils.load_class_list(class_list_file)
    model = utils.build_finetune_model(base_model,dropout=1e-3,num_classes=len(class_list),fc_layers=[1024,1024])
    model.load_weights("checkpoints/MobileNet_model_weights.h5")
    path = "/Users/tangxi/Downloads/Compressed/deepfake_baselinev1_1/test_videos"
    videos = getvideos(path)
    predictor = dlib.shape_predictor("/Users/tangxi/Downloads/Compressed/deepfake_baselinev1_1/shape_predictor_68_face_landmarks.dat")
    detector = dlib.get_frontal_face_detector()
    predictions=[]
    for each in videos:
        p_each_video=0.0
        vc = cv2.VideoCapture(each)
        rval, frame = vc.read()
        # 获取视频fps
        fps = vc.get(cv2.CAP_PROP_FPS)
        # 获取视频总帧数
        frame_all = vc.get(cv2.CAP_PROP_FRAME_COUNT)
        print("[INFO] 视频FPS: {}".format(fps))
        print("[INFO] 视频总帧数: {}".format(frame_all))
        print("[INFO] 视频时长: {}s".format(frame_all/fps))
        fake_count=0
        total_count=0
        while True:
            ret,frame = vc.read()
            if ret is False:
                break
            total_count+=1
            img = frame.copy()
            gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
            dets = detector(gray, 0)
            if len(dets)!=1:continue
            d = dets[0]
            x1 = d.top() if d.top() > 0 else 0
            y1 = d.bottom() if d.bottom() > 0 else 0
            x2 = d.left() if d.left() > 0 else 0
            y2 = d.right() if d.right() > 0 else 0
            face = img[x1-25:y1+10,x2-8:y2+8]
            print(face.shape)
            p_fake = predict_single_image(model,face)
            if p_fake>0.5:
                fake_count+=1
        if fake_count/float(total_count)>0.5:
            p_each_video = fake_count/float(total_count)
        else:
            p_each_video = 0.5
    predictions.append(p_each_video)
    submission_df = pd.DataFrame({"filename": test_videos, "label": predictions})
    submission_df.to_csv("submission.csv", index=False)    
コード例 #2
0
def build_non_bottleneck_top_model(base_model, class_list):
    finetune_model = utils.build_finetune_model(base_model,
                                                dropout=args.dropout,
                                                fc_layers=FC_LAYERS,
                                                num_classes=len(class_list))

    if args.continue_training:
        finetune_model.load_weights(WEIGHTS_PATH)

    adam = Adam(lr=0.00001)
    finetune_model.compile(adam,
                           loss='categorical_crossentropy',
                           metrics=['accuracy'])

    return finetune_model
コード例 #3
0
ファイル: main.py プロジェクト: zhangqizky/baselinev1_2
        preprocessing_function=preprocessing_function)

    train_generator = train_datagen.flow_from_directory(TRAIN_DIR,
                                                        target_size=(HEIGHT,
                                                                     WIDTH),
                                                        batch_size=BATCH_SIZE)

    validation_generator = val_datagen.flow_from_directory(
        VAL_DIR, target_size=(HEIGHT, WIDTH), batch_size=BATCH_SIZE)

    # Save the list of classes for prediction mode later
    class_list = utils.get_subfolders(TRAIN_DIR)
    utils.save_class_list(class_list, model_name=args.model, dataset_name="")

    finetune_model = utils.build_finetune_model(base_model,
                                                dropout=args.dropout,
                                                fc_layers=FC_LAYERS,
                                                num_classes=len(class_list))

    if args.continue_training:
        finetune_model.load_weights("./checkpoints/" + args.model +
                                    "_model_weights.h5")
        print("load success!")

    adam = Adam(lr=0.00001)
    finetune_model.compile(adam,
                           loss='categorical_crossentropy',
                           metrics=['accuracy'])

    num_train_images = utils.get_num_files(TRAIN_DIR)
    num_val_images = utils.get_num_files(VAL_DIR)
コード例 #4
0
ファイル: medr_predict.py プロジェクト: aalokpatwa/medr
    base_model = MobileNet(weights='imagenet',
                           include_top=False,
                           input_shape=(HEIGHT, WIDTH, 3))
elif model == "ResNet50":
    HEIGHT = 224
    WIDTH = 224
    from keras.applications.resnet50 import preprocess_input
    preprocessing_function = preprocess_input
    base_model = ResNet50(weights='imagenet',
                          include_top=False,
                          input_shape=(HEIGHT, WIDTH, 3))

class_list_file = "./class_list.txt"
class_list = utils.load_class_list(class_list_file)
finetune_model = utils.build_finetune_model(base_model,
                                            dropout=DROPOUT,
                                            fc_layers=FC_LAYERS,
                                            num_classes=len(class_list))
finetune_model.load_weights("./" + model + "_model_weights.h5")


def classify(image):
    global finetune_model

    try:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    except:
        print("ERROR classify: could not convert image into color",
              image.shape)
        return 0
    try:
        image = np.float32(cv2.resize(
コード例 #5
0
        class_list,
        model_name=args.model,
        dataset_name=os.path.basename(args.dataset),
    )

    optim = eval(args.optimizer)(lr=args.lr)
    if args.continue_training is not None:
        finetune_model = load_model(args.continue_training)
        if args.transfer_strategy == "finetune":
            utils.set_trainable(finetune_model, True)
    else:
        finetune_model = utils.build_finetune_model(
            base_model,
            dropout=args.dropout,
            fc_layers=FC_LAYERS,
            num_classes=len(class_list),
            as_fixed_feature_extractor=True
            if args.transfer_strategy == "fixed"
            else False,
            skip_interval=args.skip_interval,
        )

    finetune_model.compile(optim, loss="categorical_crossentropy", metrics=["accuracy"])
    if args.summarize_model:
        finetune_model.summary()

    num_train_images = utils.get_num_files(TRAIN_DIR)
    num_val_images = utils.get_num_files(VAL_DIR)

    def lr_decay(epoch):
        if epoch % 20 == 0 and epoch != 0:
            lr = K.get_value(model.optimizer.lr)