コード例 #1
0
def hybrDescent(Network, numIter, gamma, beta, delta, eta, eps, nhat, batchSize):
    j = 0
    mu = 0
    lastUpdate = 0
    numBatches = Network.m/batchSize
    alpha = stepSize(mu, gamma, eta)
    while calcAccuracy(Network) < .95 and j < numIter:
        j += 1
        randvec = range(Network.m)
        shuffle(randvec)
        oldInputWeight = Network.inputWeight.copy()
        oldHiddenWeight = Network.hiddenWeight.copy()
        gInput = np.zeros(Network.inputWeight.shape)
        hInput = np.zeros(Network.inputWeight.shape)
        gHidden = np.zeros(Network.hiddenWeight.shape)
        hHidden = np.zeros(Network.hiddenWeight.shape)
        
        for i in range(numBatches-1):
            obs = randvec[i*batchSize:(i+1)*batchSize]
            prop.calcDeriv(Network, Network.train[obs], obs)
            xi = 1/sum(np.power(mu,range(numBatches-i)))
            gInput += xi*Network.inputDeriv
            gHidden += xi*Network.hiddenDeriv
            hInput = mu*hInput + gInput
            hHidden = mu*hHidden + gHidden
            Network.inputWeight = oldInputWeight - alpha*hInput
            Network.hiddenWeight = oldHiddenWeight - alpha*hHidden
        
        lastUpdate += 1
        if lastUpdate > nhat or np.linalg.norm(Network.inputWeight-oldInputWeight) < eps:
            mu = beta*mu + delta
            alpha = stepSize(mu, gamma, eta)
            lastUpdate = 0
        print "Training set accuracy: %.3f" %calcAccuracy(Network)
コード例 #2
0
def gradDescent(Network, numIter, alpha):
    j = 0
    while calcAccuracy(Network) < .95 and j < numIter:
        j += 1
        prop.calcDeriv(Network)
        Network.inputWeight -= alpha*Network.inputDeriv
        Network.hiddenWeight -= alpha*Network.hiddenDeriv
        print "Training set accuracy: %.3f" %calcAccuracy(Network)
コード例 #3
0
def incrDescent(Network, numIter, alpha):
    j = 0
    while calcAccuracy(Network) < .95 and j < numIter:
        j += 1
        randvec = range(Network.m)
        shuffle(randvec)
        for i in randvec:
            prop.calcDeriv(Network, Network.train[i], i)
            Network.inputWeight -= alpha*Network.inputDeriv
            Network.hiddenWeight -= alpha*Network.hiddenDeriv
        print "Training set accuracy: %.3f" %calcAccuracy(Network)
コード例 #4
0
 def trainNetwork(self, method, *params):
     if method == 'GD':
         method = descent.gradDescent
     elif method == 'ID':
         method = descent.incrDescent
     else:
         method = descent.hybrDescent
         
     method(self, *params)
     if self.test is not None:
         print "Testing set accuracy"
         print utils.calcAccuracy(self, self.test, self.testDigits)  
コード例 #5
0
def genPOMDP(filename, reward, cost, gammas, numberOfWorkerPools):
    difficulties = getDifficulties(0.1)
    numDiffs = len(difficulties)
    
    #Add one absorbing state
    numberOfStates = ((numDiffs) * 2) + 1
    numberOfActions = numberOfWorkerPools + 2
    file = open(filename, 'w')
    file.write('discount: 0.9999\n')
    file.write('values: reward\n')
    file.write('states: %d\n' % numberOfStates)
    file.write('actions: %d\n' % numberOfActions)
    SUBMITZERO = numberOfWorkerPools
    SUBMITONE = numberOfWorkerPools + 1
    file.write('observations: Zero One None\n')

    for i in range(0, numberOfStates):
        for k in range(0, numberOfWorkerPools):
            file.write('T: %d : %d : %d %f\n' % (k, i, i, 1.0))

    #Add transitions to absorbing state
    file.write('T: %d : * : %d %f\n' % (SUBMITZERO, numberOfStates-1, 1.0))
    file.write('T: %d : * : %d %f\n' % (SUBMITONE, numberOfStates-1, 1.0))

    #Add observations in absorbing state
    file.write('O: * : %d : None %f\n' % (numberOfStates-1, 1.0))

    for v in range(0, 2):
        for diffState in range(0,numDiffs):
        #for diffState in product(range(numDiffs), repeat = numberOfWorkerPools):
            state = v * numDiffs + diffState
            """for k in range(0, numberOfWorkerPools):
                state += (diffState[k] * (numDiffs ** (numberOfWorkerPools - (k+1))))"""
            file.write('O: %d: %d : None %f\n' % (SUBMITZERO, state, 1.0))
            file.write('O: %d: %d : None %f\n' % (SUBMITONE, state, 1.0))
            if v == 0: #if the answer is 0
                for k in range(0, numberOfWorkerPools):
                    file.write('O: %d : %d : Zero %f\n' % 
                               (k, state, calcAccuracy(gammas[k], difficulties[diffState])))
                    file.write('O: %d : %d : One %f\n' % 
                               (k, state, 1.0 - calcAccuracy(gammas[k], difficulties[diffState])))
            else: # if the answer is 1
                for k in range(0, numberOfWorkerPools):
                    file.write('O: %d : %d : Zero %f\n' % 
                               (k, state, 1.0 - calcAccuracy(gammas[k], difficulties[diffState])))
                    file.write('O: %d : %d : One %f\n' % 
                               (k, state, calcAccuracy(gammas[k], difficulties[diffState])))
    for v in range(0,numberOfWorkerPools):
        file.write('R: %d : * : * : * %f\n' % (v, -1 * cost[v]))


    for i in range(0, numberOfStates-1):
        if i < (numberOfStates-1) / 2:
            file.write('R: %d : %d : %d : * %f\n' % (SUBMITZERO, i, numberOfStates-1, 1))
            file.write('R: %d : %d : %d : * %f\n' % (SUBMITONE, i, numberOfStates-1, reward))
        else:
            file.write('R: %d : %d : %d : * %f\n' % (SUBMITONE, i, numberOfStates-1, 1))
            file.write('R: %d : %d : %d : * %f\n' % (SUBMITZERO, i, numberOfStates-1, reward))

    #Add rewards in absorbing state
    file.write('R: * : %d : %d : * %f\n' % (numberOfStates-1, numberOfStates-1, 0))

    file.close()