コード例 #1
0
ファイル: Huobipro.py プロジェクト: AshWorkshop/Trandash
def GetBuySell(coinPair,grade=0):
    depth = get_depth(toCoinPairStr(coinPair),toGradeStr(grade))
    asks = depth['tick']['asks']  #卖单
    bids = depth['tick']['bids']  #买单
    avgAsks = calcMean(asks)
    avgBids = calcMean(bids)
    #print('卖单',asks)
    #print('买单',bids)
    return ((bids, asks), (avgBids, avgAsks))
コード例 #2
0
def GetBuySell(coinPair):
    data = gate_query.orderBook(toCoinPairStr(coinPair))
    # print(data)
    asks = data['asks']
    bids = data['bids']
    avgAsks = calcMean(asks, True)
    avgBids = calcMean(bids)

    return ((bids, asks), (avgBids, avgAsks))
コード例 #3
0
ファイル: Bitfinex.py プロジェクト: AshWorkshop/Trandash
def GetBuySell(coinPair):
    data = bitfinex.orderbook(symbol=toCoinPairStr(coinPair))
    # print(data)
    asksj = data['asks']  #json列表
    bidsj = data['bids']  #json列表
    """
    asks和bids列表中的每一个元素都是json,eg:
    {
    "price":"574.62",
    "amount":"19.1334",
    "timestamp":"1472506126.0"
    }
    故将json列表转化为二维列表
    """
    asks = jsonToList(asksj)
    bids = jsonToList(bidsj)
    avgAsks = calcMean(asks)
    avgBids = calcMean(bids)
    return ((bids, asks), (avgBids, avgAsks))
コード例 #4
0
def stepUVE(os, sp):
    imax = os.imax
    jmax = os.jmax
    kmax = os.kmax

    # Based on the values in os.W[i,j,0] - the vertical speeds calculated at the top edge
    # of the surface layer cells, calculate the updated elevation:
    os.E_next[1:-1, 1:-1] = os.E[1:-1, 1:-1] + sp.dt * os.W[1:-1, 1:-1, 0]

    # Create temporary arrays:
    p_above = sp.p_atm0 * np.ones((imax, jmax))
    p_diff = np.zeros((imax, jmax))
    p_gradx = np.zeros((imax - 1, jmax, kmax))
    p_grady = np.zeros((imax, jmax - 1, kmax))

    # Calculate pressure gradients:
    for k in range(0, kmax):
        for i in range(0, imax):
            for j in range(0, jmax):
                if k < os.kmm[i, j]:
                    p_diff[i, j] = os.cellHeights[i, j,
                                                  k] * 9.81 * os.rho[i, j, k]
                else:
                    p_diff[i, j] = 0

        for i in range(0, imax - 1):
            for j in range(0, jmax):
                if os.maskU[i, j, k] > 0:
                    # height measured from below:
                    meanCellHeight = 0.5 * (os.cellHeights[i, j, k] +
                                            os.cellHeights[i + 1, j, k])
                    if k == 0:  # Surface layer
                        p_gradx[i,j,k] = (p_above[i+1,j] + p_diff[i+1,j]*(os.cellHeights[i+1,j,k]-0.5*meanCellHeight)/os.cellHeights[i+1,j,k] \
                             - (p_above[i,j] + p_diff[i,j]*(os.cellHeights[i,j,k]-0.5*meanCellHeight)/os.cellHeights[i,j,k])) / sp.dx
                    else:  # Mid or bottom layer:
                        p_gradx[i,j,k] = (p_above[i+1,j] + p_diff[i+1,j]*0.5*meanCellHeight/os.cellHeights[i+1,j,k] \
                            - (p_above[i,j] + p_diff[i,j]* 0.5*meanCellHeight/os.cellHeights[i,j,k])) / sp.dx

        for i in range(0, imax):
            for j in range(0, jmax - 1):
                if os.maskV[i, j, k] > 0:
                    # height measured from below:
                    meanCellHeight = 0.5 * (os.cellHeights[i, j, k] +
                                            os.cellHeights[i, j + 1, k])
                    if k == 0:  # Surface layer
                        p_grady[i,j,k] = (p_above[i,j+1] + p_diff[i,j+1]*(os.cellHeights[i,j+1,k]-0.5*meanCellHeight)/os.cellHeights[i,j+1,k] \
                             - (p_above[i,j] + p_diff[i,j]*(os.cellHeights[i,j,k]-0.5*meanCellHeight)/os.cellHeights[i,j,k])) / sp.dx
                    else:  # Mid or bottom layer:
                        p_grady[i,j,k] = (p_above[i,j+1] + p_diff[i,j+1]*0.5*meanCellHeight/os.cellHeights[i,j+1,k] \
                            - (p_above[i,j] + p_diff[i,j]* 0.5*meanCellHeight/os.cellHeights[i,j,k])) / sp.dx

        p_above = p_above + p_diff

    # Calculate horizontal accelerations in U direction:
    for i in range(0, imax - 1):
        for j in range(0, jmax):
            if os.kmm[i, j] >= 0:
                for k in range(0, os.kmax):

                    if not os.maskU[i, j, k]:
                        os.U_next[i, j, k:os.kmax] = math.nan
                        break

                    # Get the value at this point:
                    val = os.U[i, j, k]

                    # Estimate the local V and W values by interpolation:
                    vMean = calcMean(
                        (getUV(os.V, i, j - 1, k,
                               math.nan), getUV(os.V, i, j, k, math.nan),
                         getUV(os.V, i + 1, j - 1, k,
                               math.nan), getUV(os.V, i + 1, j, k, math.nan)))
                    wMean = calcMean(
                        (getUV(os.W, i, j, k,
                               math.nan), getUV(os.W, i + 1, j, k, math.nan)))

                    # Estimate the local d2u/dz2 (double derivative):
                    if k > 0:
                        dz_up = 0.5 * (os.cellHeights[i, j, k] +
                                       os.cellHeights[i, j, k - 1])
                    else:
                        dz_up = os.cellHeights[i, j, k]
                    if k < kmax - 1:
                        dz_down = 0.5 * (os.cellHeights[i, j, k] +
                                         os.cellHeights[i, j, k + 1])
                    else:
                        dz_down = os.cellHeights[i, j, k]
                    d2u_dz2 = ((getUV(os.U,i,j,k-1,val) - val)/dz_up \
                               - (val - getUV(os.U,i,j,k+1,val))/dz_down)/(0.5*(dz_up+dz_down))

                    if sp.biharmonic:
                        # If biharmonic is activated the diffusion is handled later, so we
                        # can set it to 0 for now:
                        diffUV = 0
                    else:
                        # Estimate the local d2u/dx2 (double derivative):
                        d2u_dx2 = (getUV(os.U, i - 1, j, k, val) - 2 * val +
                                   getUV(os.U, i + 1, j, k, val)) / (sp.dx *
                                                                     sp.dx)
                        # Estimate the local d2u/dy2 (double derivative):
                        d2u_dy2 = (getUV(os.U, i, j - 1, k, val) - 2 * val +
                                   getUV(os.U, i, j + 1, k, val)) / (sp.dx *
                                                                     sp.dx)
                        # Calculate diffusion term:
                        diffUV = os.AH[i, j, k] * (d2u_dx2 + d2u_dy2)

                    # Calculate nonlinear (advective) terms:
                    if sp.advectiveTermsOn:
                        # Calculate the advection (nonlinear) terms using the
                        # Superbee flux limiter to limit oscillations while
                        # suppressing numerical diffusion:
                        advU = superbeeAdv(sp.dt, sp.dx,
                                           getUV(os.U, i - 2, j, k, val),
                                           getUV(os.U, i - 1, j, k, val), val,
                                           getUV(os.U, i + 1, j, k, val),
                                           getUV(os.U, i + 2, j, k, val), val,
                                           val)
                        advV = superbeeAdv(sp.dt, sp.dx,
                                           getUV(os.U, i, j - 2, k, val),
                                           getUV(os.U, i, j - 1, k, val), val,
                                           getUV(os.U, i, j + 1, k, val),
                                           getUV(os.U, i, j + 2, k, val),
                                           vMean, vMean)
                        advW = superbeeAdv(sp.dt, sp.dx,
                                           getUV(os.U, i, j, k - 2, val),
                                           getUV(os.U, i, j, k - 1, val), val,
                                           getUV(os.U, i, j, k + 1, val),
                                           getUV(os.U, i, j + 2, k + 2, val),
                                           wMean, wMean)
                    else:
                        advU = 0
                        advV = 0
                        advW = 0

                    # Sum up the terms and calculate next time step value:
                    os.U_next[i, j, k] = os.U[i, j, k] + sp.dt * (
                        -p_gradx[i, j, k] / sp.rho_0  # Pressure term
                        + advU + advV + advW  # Advective terms
                        + sp.A_z * d2u_dz2  # Vertical eddy viscosity
                        + diffUV  # Horizontal diffusion
                        + 2 * sp.omega * math.sin(sp.phi0) * vMean)  # Coriolis

                    #if np.isnan(os.U_next[i,j,k]) or np.isinf(os.U_next[i,j,k]) or np.isinf(-os.U_next[i,j,k]):
                    #    print("nan")

    # Calculate horizontal accelerations in V direction:
    for i in range(0, imax):
        for j in range(0, jmax - 1):
            if os.kmm[i, j] >= 0:
                for k in range(0, os.kmm[i, j]):

                    if not os.maskV[i, j, k]:
                        os.V_next[i, j, k:os.kmax] = math.nan
                        break

                    # Get the value at this point:
                    val = os.V[i, j, k]

                    # Estimate the local U and W values by interpolation:
                    uMean = calcMean(
                        (getUV(os.U, i - 1, j, k,
                               math.nan), getUV(os.U, i, j, k, math.nan),
                         getUV(os.U, i - 1, j + 1, k,
                               math.nan), getUV(os.U, i, j + 1, k, math.nan)))
                    wMean = calcMean(
                        (getUV(os.W, i, j, k,
                               math.nan), getUV(os.W, i, j + 1, k, math.nan)))

                    # Estimate the local d2u/dz2 (double derivative):
                    if k > 0:
                        dz_up = 0.5 * (os.cellHeights[i, j, k] +
                                       os.cellHeights[i, j, k - 1])
                    else:
                        dz_up = os.cellHeights[i, j, k]
                    if k < kmax - 1:
                        dz_down = 0.5 * (os.cellHeights[i, j, k] +
                                         os.cellHeights[i, j, k + 1])
                    else:
                        dz_down = os.cellHeights[i, j, k]
                    d2u_dz2 = ((getUV(os.V,i,j,k-1,val) - val)/dz_up \
                               - (val - getUV(os.V,i,j,k+1,val))/dz_down)/(0.5*(dz_up+dz_down))

                    if sp.biharmonic:
                        # If biharmonic is activated the diffusion is handled later, so we
                        # can set it to 0 for now:
                        diffUV = 0
                    else:
                        # Estimate the local d2u/dx2 (double derivative):
                        d2u_dx2 = (getUV(os.V, i - 1, j, k, val) - 2 * val +
                                   getUV(os.V, i + 1, j, k, val)) / (sp.dx *
                                                                     sp.dx)
                        # Estimate the local d2u/dy2 (double derivative):
                        d2u_dy2 = (getUV(os.V, i, j - 1, k, val) - 2 * val +
                                   getUV(os.V, i, j + 1, k, val)) / (sp.dx *
                                                                     sp.dx)
                        # Calculate diffusion term:
                        diffUV = os.AH[i, j, k] * (d2u_dx2 + d2u_dy2)

                    # Calculate nonlinear (advective) terms:
                    if sp.advectiveTermsOn:
                        # Calculate the advection (nonlinear) terms using the
                        # Superbee flux limiter to limit oscillations while
                        # suppressing numerical diffusion:
                        advU = superbeeAdv(sp.dt, sp.dx,
                                           getUV(os.V, i - 2, j, k, val),
                                           getUV(os.V, i - 1, j, k, val), val,
                                           getUV(os.V, i + 1, j, k, val),
                                           getUV(os.V, i + 2, j, k, val), val,
                                           val)
                        advV = superbeeAdv(sp.dt, sp.dx,
                                           getUV(os.V, i, j - 2, k, val),
                                           getUV(os.V, i, j - 1, k, val), val,
                                           getUV(os.V, i, j + 1, k, val),
                                           getUV(os.V, i, j + 2, k, val),
                                           vMean, vMean)
                        advW = superbeeAdv(sp.dt, sp.dx,
                                           getUV(os.V, i, j, k - 2, val),
                                           getUV(os.V, i, j, k - 1, val), val,
                                           getUV(os.V, i, j, k + 1, val),
                                           getUV(os.V, i, j + 2, k + 2, val),
                                           wMean, wMean)
                    else:
                        advU = 0
                        advV = 0
                        advW = 0

                    # Sum up the terms and calculate next time step value:
                    os.V_next[i, j, k] = os.V[i, j, k] + sp.dt * (
                        -p_grady[i, j, k] / sp.rho_0  # Pressure term
                        + advU + advV + advW  # Advective terms
                        + sp.A_z * d2u_dz2  # Vertical eddy viscosity
                        + diffUV  # Horizontal diffusion
                        - 2 * sp.omega * math.sin(sp.phi0) * uMean)  # Coriolis

    # If we are using biharmonic diffusion of velocities, do it here:
    if sp.biharmonic:
        (diffU, diffV) = biharmon(os, sp)
        os.U_next = os.U_next - sp.dt * diffU
        os.V_next = os.V_next - sp.dt * diffV

    # Wind stress and bottom friction, U:
    for i in range(0, os.imax - 1):
        for j in range(0, os.jmax):
            if os.maskU[
                    i, j,
                    0] > 0:  # Check if there is a valid current vector at this position
                # Surface cell, average height on cell border:
                dz_mean = 0.5 * (os.cellHeights[i, j, 0] +
                                 os.cellHeights[i + 1, j, 0])
                os.U_next[i, j, 0] = os.U_next[
                    i, j,
                    0] + sp.dt * sp.windStressCoeff * os.windU[i, j] / dz_mean

                # Bottom friction. Apply at the minimum kmax of the
                # neighbouring cells. We need to calculate the absolute value
                # of the current speed here, based on U and interpolated V values:
                k = min(os.kmm[i, j], os.kmm[i + 1, j]) - 1
                # Bottom cell, average height on cell border:
                dz_mean = 0.5 * (os.cellHeights[i, j, k] +
                                 os.cellHeights[i + 1, j, k])
                # V value interpolated here:
                meanV = calcMean([
                    getUV(os.V, i, j - 1, k, math.nan),
                    getUV(os.V, i + 1, j - 1, k, math.nan),
                    getUV(os.V, i, j, k, math.nan),
                    getUV(os.V, i + 1, j, k, math.nan)
                ])
                speed = math.sqrt(os.U[i, j, k] * os.U[i, j, k] +
                                  meanV * meanV)
                os.U_next[i, j, k] = os.U_next[
                    i, j, k] - sp.dt * sp.C_b * os.U[i, j, k] * speed / dz_mean

    # Wind stress and bottom friction, V:
    for i in range(0, os.imax):
        for j in range(0, os.jmax - 1):
            if os.maskV[
                    i, j,
                    0] > 0:  # Check if there is a valid current vector at this position
                # Surface cell, average height on cell border:
                dz_mean = 0.5 * (os.cellHeights[i, j, 0] +
                                 os.cellHeights[i, j + 1, 0])
                os.V_next[i, j, 0] = os.V_next[
                    i, j,
                    0] + sp.dt * sp.windStressCoeff * sp.windV[i, j] / dz_mean

                # Bottom friction. Apply at the minimum kmax of the
                # neighbouring cells. We need to calculate the absolute value
                # of the current speed here, based on U and interpolated V values:
                k = min(os.kmm[i, j], os.kmm[i, j + 1]) - 1
                # Bottom cell, average height on cell border:
                dz_mean = 0.5 * (os.cellHeights[i, j, k] +
                                 os.cellHeights[i, j + 1, k])
                # V value interpolated here:
                meanU = calcMean([
                    getUV(os.U, i - 1, j, k, math.nan),
                    getUV(os.U, i - 1, j + 1, k, math.nan),
                    getUV(os.U, i, j, k, math.nan),
                    getUV(os.U, i, j + 1, k, math.nan)
                ])
                speed = math.sqrt(os.V[i, j, k] * os.V[i, j, k] +
                                  meanV * meanV)
                os.V_next[i, j, k] = os.V_next[
                    i, j, k] - sp.dt * sp.C_b * os.V[i, j, k] * speed / dz_mean
コード例 #5
0
ファイル: split.py プロジェクト: erlentoi/pyMiniOcean-1
def integrate(os, sp, scenario, fullDims, fullDepth, pos, splits, slice, t,
              doMpi, comm, rank):
    # Some small precalculations:
    dt = sp.dt / sp.nsub
    dtn = sp.dt
    dx = sp.dx
    dx2 = dx * dx
    dtdx = dt / dx
    dtndx = dtn / dx

    setBounds.setEUVBounds(scenario, fullDims, fullDepth, pos, splits, slice,
                           t, os, sp)

    UB_prelim = os.UB.copy()
    VB_prelim = os.VB.copy()
    AU = np.zeros((os.imax - 1, os.jmax))
    AV = np.zeros((os.imax, os.jmax - 1))

    # If we are using biharmonic diffusion of velocities, compute those for velocity deviations here:
    if sp.biharmonic:
        (diffU, diffV) = biharmon(os, sp, os.UB, os.VB)

    # Then calculate preliminary U deviations for next long time step by including
    # advection (of full velocities), coriolis terms based on deviations, pressure term based on
    # deviations and diffusion of deviations:
    for i in range(0, os.imax - 1):
        for j in range(0, os.jmax):
            # First define the number of layers here:
            kmx = min(os.kmm[i, j], os.kmm[i + 1, j])
            sumD = 0
            for k in range(0, kmx):
                #if not os.maskU[i,j,k]:
                #    break
                # As we go down through the layers we sum up the pressure/rho values in the neighbouring cells:
                if k == 0:
                    # Center of cell boundary:
                    p_C = np.array([
                        9.81 * 0.5 * os.DW[i, j, k] *
                        (os.rho[i, j, k] / sp.rho_0 - 1), 9.81 * 0.5 *
                        os.DW[i, j, k] * (os.rho[i + 1, j, k] / sp.rho_0 - 1)
                    ])
                    # Bottom of cell boundary, stored for next iteration:
                    p_B = 2 * p_C
                else:
                    # Added pressure/rho in this layer:
                    p_h = np.array([
                        9.81 * os.DW[i, j, k] *
                        (os.rho[i, j, k] / sp.rho_0 - 1), 9.81 *
                        os.DW[i, j, k] * (os.rho[i + 1, j, k] / sp.rho_0 - 1)
                    ])
                    # Center of cell boundary:
                    p_C = p_B + 0.5 * p_h
                    # Bottom of cell boundary, stored for next iteration:
                    p_B = p_B + p_h

                # Add pressure term:
                UB_prelim[i, j,
                          k] = UB_prelim[i, j, k] - dtndx * (p_C[1] - p_C[0])

                #if i==10 and j==10:
                #    print("pdiff="+str(p_C[1]-p_C[0])+", p_C[0]="+str(p_C[0])+", sumD="+str(sumD+os.DWD[i,j,k])+
                #          ", rho="+str(os.rho[i,j,k])+", rho/rho0-1="+str(os.rho[i,j,k]/sp.rho_0 - 1))
                #    if k==os.kmax-1:
                #        print()

                # Get the full speed and deviation at this point:
                val = os.UA[i, j] + os.UB[i, j, k]
                valB = os.UB[i, j, k]
                # Estimate the local full V and W values by interpolation:
                vMean = calcMean(
                    (getUV(os.V, i, j - 1, k,
                           math.nan), getUV(os.V, i, j, k, math.nan),
                     getUV(os.V, i + 1, j - 1, k,
                           math.nan), getUV(os.V, i + 1, j, k, math.nan)))
                wMean = calcMean(
                    (getUV(os.W, i, j, k,
                           math.nan), getUV(os.W, i + 1, j, k, math.nan)))
                # Estimate the local V deviation value by interpolation:
                vbMean = calcMean(
                    (getUV(os.VB, i, j - 1, k,
                           math.nan), getUV(os.VB, i, j, k, math.nan),
                     getUV(os.VB, i + 1, j - 1, k,
                           math.nan), getUV(os.VB, i + 1, j, k, math.nan)))
                # Get the absolute speed value:
                absSpeed = math.sqrt(val * val + vMean * vMean)

                # Calculate nonlinear (advective) terms:
                if sp.advectiveTermsOn:
                    # Calculate the advection (nonlinear) terms using the
                    # Superbee flux limiter to limit oscillations while
                    # suppressing numerical diffusion:
                    advU = superbeeAdv(dt, sp.dx,
                                       getUV(os.U, i - 2, j, k, val),
                                       getUV(os.U, i - 1, j, k, val), val,
                                       getUV(os.U, i + 1, j, k, val),
                                       getUV(os.U, i + 2, j, k, val), val, val)
                    advV = superbeeAdv(dt, sp.dx,
                                       getUV(os.U, i, j - 2, k, val),
                                       getUV(os.U, i, j - 1, k, val), val,
                                       getUV(os.U, i, j + 1, k, val),
                                       getUV(os.U, i, j + 2, k,
                                             val), vMean, vMean)
                    advW = superbeeAdv(dt, sp.dx,
                                       getUV(os.U, i, j, k - 2, val),
                                       getUV(os.U, i, j, k - 1, val), val,
                                       getUV(os.U, i, j, k + 1, val),
                                       getUV(os.U, i, j + 2, k + 2,
                                             val), wMean, wMean)
                else:
                    advU = 0
                    advV = 0
                    advW = 0

                # Add advective terms:
                UB_prelim[i, j,
                          k] = UB_prelim[i, j, k] + dtn * (advU + advV + advW)

                # Diffusion:
                if sp.biharmonic:
                    UB_prelim[i, j,
                              k] = UB_prelim[i, j, k] - dtn * diffU[i, j, k]
                else:
                    # Estimate the local d2u/dx2 (double derivative):
                    d2u_dx2 = (getUV(os.UB, i - 1, j, k, valB) - 2 * valB +
                               getUV(os.UB, i + 1, j, k, valB)) / dx2
                    # Estimate the local d2u/dy2 (double derivative):
                    d2u_dy2 = (getUV(os.UB, i, j - 1, k, valB) - 2 * valB +
                               getUV(os.UB, i, j + 1, k, valB)) / dx2
                    # Calculate diffusion term:
                    UB_prelim[i, j, k] = UB_prelim[
                        i, j, k] + dtn * os.AH[i, j, k] * (d2u_dx2 + d2u_dy2)

                # Coriolis:
                UB_prelim[i, j, k] = UB_prelim[
                    i, j, k] + dtn * 2 * sp.omega * math.sin(sp.phi0) * vbMean

                # Wind stress. Only if this is the surface layer:
                if k == 0:
                    UB_prelim[i, j, k] = UB_prelim[
                        i, j, k] + dtn * sp.windStressCoeff * os.windU[
                            i, j] / os.DWD[i, j, k]

                # Bottom friction. Only if this is bottom layer:
                if k == kmx - 1:
                    UB_prelim[i, j, k] = UB_prelim[
                        i, j,
                        k] - dtn * sp.C_b * val * absSpeed / os.DWD[i, j, k]

                # Vertical diffusion.
                if kmx > 1 and not sp.implicitVerticalDiff:
                    # Estimate the local d2u/dz2 (double derivative):
                    if k > 0:
                        dz_up = 0.5 * (os.DWD[i, j, k] + os.DWD[i, j, k - 1])
                    else:
                        dz_up = os.DWD[i, j, k]
                    if k < os.kmax - 1 and os.maskU[i, j, k + 1]:
                        dz_down = 0.5 * (os.DWD[i, j, k] + os.DWD[i, j, k + 1])
                    else:
                        dz_down = os.DW[i, j, k]
                    d2u_dz2 = ((getUV(os.UB,i,j,k-1,valB) - valB)/dz_up \
                               - (valB - getUV(os.UB,i,j,k+1,valB))/dz_down)/(0.5*(dz_up+dz_down))
                    UB_prelim[i, j,
                              k] = UB_prelim[i, j, k] + dtn * sp.A_z * d2u_dz2

                if math.isnan(UB_prelim[i, j, k]):
                    print(i)

                # Find AU (depth integrated UB for this time step):
                AU[i, j] = AU[i, j] + os.DWD[i, j, k] * UB_prelim[i, j, k]
                sumD = sumD + os.DWD[i, j, k]

            # Divide AU by sum depth and time step:
            if sumD > 0:
                AU[i, j] = AU[i, j] / (dtn * sumD)

                # Subtract AU in all layers:
                for k in range(0, kmx):
                    UB_prelim[i, j, k] = UB_prelim[i, j, k] - AU[i, j] * dtn

            # Vertical diffusion - implicit calculation:
            if sp.implicitVerticalDiff and kmx > 1:
                AP = np.zeros((kmx, ))
                CP = np.zeros((kmx, ))
                SP = np.zeros((kmx, ))
                EP = np.zeros((kmx, ))
                AP[0] = 0
                for k in range(1, kmx):
                    AP[k] = sp.A_z * dtn / (
                        os.DWD[i, j, k] * 0.5 *
                        (os.DWD[i, j, k] + os.DWD[i, j, k - 1]))
                    CP[k - 1] = sp.A_z * dtn / (
                        os.DWD[i, j, k - 1] * 0.5 *
                        (os.DWD[i, j, k - 1] + os.DWD[i, j, k]))
                CP[kmx - 1] = 0

                SP[0] = 1 + CP[0] + AP[0]
                EP[0] = UB_prelim[i, j, 0]
                for k in range(1, kmx):
                    SP[k] = 1 + AP[k] + CP[k] - AP[k] * CP[k - 1] / SP[k - 1]
                    EP[k] = UB_prelim[i, j, k] + AP[k] * EP[k - 1] / SP[k - 1]
                UB_prelim[i, j, kmx - 1] = EP[kmx - 1] / SP[kmx - 1]
                for k in range(kmx - 2, -1, -1):
                    UB_prelim[i, j,
                              k] = (EP[k] +
                                    CP[k] * UB_prelim[i, j, k + 1]) / SP[k]

    # Calculate preliminary V deviations;
    for i in range(0, os.imax):
        for j in range(0, os.jmax - 1):
            # First define the number of layers here:
            kmx = min(os.kmm[i, j], os.kmm[i, j + 1])
            sumD = 0
            for k in range(0, kmx):
                #if not os.maskV[i,j,k]:
                #    break
                # As we go down through the layers we sum up the pressure/rho values in the neighbouring cells:
                if k == 0:
                    # Center of cell boundary:
                    p_C = np.array([
                        9.81 * 0.5 * os.DS[i, j, k] *
                        (os.rho[i, j, k] / sp.rho_0 - 1), 9.81 * 0.5 *
                        os.DS[i, j, k] * (os.rho[i, j + 1, k] / sp.rho_0 - 1)
                    ])
                    # Bottom of cell boundary, stored for next iteration:
                    p_B = 2 * p_C
                else:
                    # Added pressure/rho in this layer:
                    p_h = np.array([
                        9.81 * os.DS[i, j, k] *
                        (os.rho[i, j, k] / sp.rho_0 - 1), 9.81 *
                        os.DS[i, j, k] * (os.rho[i, j + 1, k] / sp.rho_0 - 1)
                    ])
                    # Center of cell boundary:
                    p_C = p_B + 0.5 * p_h
                    # Bottom of cell boundary, stored for next iteration:
                    p_B = p_B + p_h

                # Add pressure term:
                VB_prelim[i, j,
                          k] = VB_prelim[i, j, k] - dtndx * (p_C[1] - p_C[0])

                # Get the full speed and deviation at this point:
                val = os.V[i, j, k]
                valB = os.VB[i, j, k]
                # Estimate the local U and W values by interpolation:
                uMean = calcMean(
                    (getUV(os.U, i - 1, j, k,
                           math.nan), getUV(os.U, i, j, k, math.nan),
                     getUV(os.U, i - 1, j + 1, k,
                           math.nan), getUV(os.U, i, j + 1, k, math.nan)))
                wMean = calcMean(
                    (getUV(os.W, i, j, k,
                           math.nan), getUV(os.W, i, j + 1, k, math.nan)))
                # Estimate the local U deviation value by interpolation:
                ubMean = calcMean(
                    (getUV(os.UB, i - 1, j, k,
                           math.nan), getUV(os.UB, i, j, k, math.nan),
                     getUV(os.UB, i - 1, j + 1, k,
                           math.nan), getUV(os.UB, i, j + 1, k, math.nan)))
                # Get the absolute speed value:
                absSpeed = math.sqrt(val * val + uMean * uMean)

                # Calculate nonlinear (advective) terms:
                if sp.advectiveTermsOn:
                    # Calculate the advection (nonlinear) terms using the
                    # Superbee flux limiter to limit oscillations while
                    # suppressing numerical diffusion:
                    advU = superbeeAdv(dt, sp.dx,
                                       getUV(os.V, i - 2, j, k, val),
                                       getUV(os.V, i - 1, j, k, val), val,
                                       getUV(os.V, i + 1, j, k, val),
                                       getUV(os.V, i + 2, j, k,
                                             val), uMean, uMean)
                    advV = superbeeAdv(dt, sp.dx,
                                       getUV(os.V, i, j - 2, k, val),
                                       getUV(os.V, i, j - 1, k, val), val,
                                       getUV(os.V, i, j + 1, k, val),
                                       getUV(os.V, i, j + 2, k, val), val, val)
                    advW = superbeeAdv(dt, sp.dx,
                                       getUV(os.V, i, j, k - 2, val),
                                       getUV(os.V, i, j, k - 1, val), val,
                                       getUV(os.V, i, j, k + 1, val),
                                       getUV(os.V, i, j + 2, k + 2,
                                             val), wMean, wMean)
                else:
                    advU = 0
                    advV = 0
                    advW = 0

                # Add advective terms:
                VB_prelim[i, j,
                          k] = VB_prelim[i, j, k] + dtn * (advU + advV + advW)

                # Diffusion:
                if sp.biharmonic:
                    VB_prelim[i, j,
                              k] = VB_prelim[i, j, k] - dtn * diffV[i, j, k]
                else:
                    # Estimate the local d2v/dx2 (double derivative):
                    d2v_dx2 = (getUV(os.VB, i - 1, j, k, valB) - 2 * valB +
                               getUV(os.VB, i + 1, j, k, valB)) / dx2
                    # Estimate the local d2v/dy2 (double derivative):
                    d2v_dy2 = (getUV(os.VB, i, j - 1, k, valB) - 2 * valB +
                               getUV(os.VB, i, j + 1, k, valB)) / dx2
                    # Calculate diffusion term:
                    VB_prelim[i, j, k] = VB_prelim[
                        i, j, k] + dtn * os.AH[i, j, k] * (d2v_dx2 + d2v_dy2)

                # Coriolis:
                VB_prelim[i, j, k] = VB_prelim[
                    i, j, k] - dtn * 2 * sp.omega * math.sin(sp.phi0) * ubMean

                # Wind stress. Only if this is the surface layer:
                if k == 0:
                    VB_prelim[i, j, k] = VB_prelim[
                        i, j, k] + dtn * sp.windStressCoeff * os.windV[
                            i, j] / os.DSD[i, j, k]

                # Bottom friction. Only if this is bottom layer:
                if k == kmx - 1:
                    VB_prelim[i, j, k] = VB_prelim[
                        i, j, k] - sp.C_b * val * absSpeed / os.DSD[i, j, k]

                # Vertical diffusion.
                if kmx > 1 and not sp.implicitVerticalDiff:
                    # Estimate the local d2u/dz2 (double derivative):
                    if k > 0:
                        dz_up = 0.5 * (os.DSD[i, j, k] + os.DSD[i, j, k - 1])
                    else:
                        dz_up = os.DSD[i, j, k]
                    if k < os.kmax - 1 and os.maskV[i, j, k + 1]:
                        dz_down = 0.5 * (os.DSD[i, j, k] + os.DSD[i, j, k + 1])
                    else:
                        dz_down = os.DS[i, j, k]
                    d2u_dz2 = (
                        (getUV(os.VB, i, j, k - 1, valB) - valB) / dz_up -
                        (valB - getUV(os.VB, i, j, k + 1, valB)) / dz_down) / (
                            0.5 * (dz_up + dz_down))
                    VB_prelim[i, j, k] = VB_prelim[i, j, k] + sp.A_z * d2u_dz2

                # Find AV (depth integrated VB for this time step):
                AV[i, j] = AV[i, j] + os.DSD[i, j, k] * VB_prelim[i, j, k]
                sumD = sumD + os.DSD[i, j, k]

            # Divide AV by sum depth and time step:
            if sumD > 0:
                AV[i, j] = AV[i, j] / (dtn * sumD)

                # Subtract AU in all layers:
                for k in range(0, kmx):
                    VB_prelim[i, j, k] = VB_prelim[i, j, k] - AV[i, j] * dtn

            # Vertical diffusion - implicit calculation:
            if sp.implicitVerticalDiff and kmx > 1:
                AP = np.zeros((kmx, ))
                CP = np.zeros((kmx, ))
                SP = np.zeros((kmx, ))
                EP = np.zeros((kmx, ))
                AP[0] = 0
                for k in range(1, kmx):
                    AP[k] = sp.A_z * dtn / (
                        os.DSD[i, j, k] * 0.5 *
                        (os.DSD[i, j, k] + os.DSD[i, j, k - 1]))
                    CP[k - 1] = sp.A_z * dtn / (
                        os.DSD[i, j, k - 1] * 0.5 *
                        (os.DSD[i, j, k - 1] + os.DSD[i, j, k]))
                CP[kmx - 1] = 0

                SP[0] = 1 + CP[0] + AP[0]
                EP[0] = VB_prelim[i, j, 0]
                for k in range(1, kmx):
                    SP[k] = 1 + AP[k] + CP[k] - AP[k] * CP[k - 1] / SP[k - 1]
                    EP[k] = VB_prelim[i, j, k] + AP[k] * EP[k - 1] / SP[k - 1]
                VB_prelim[i, j, kmx - 1] = EP[kmx - 1] / SP[kmx - 1]
                for k in range(kmx - 2, -1, -1):
                    VB_prelim[i, j,
                              k] = (EP[k] +
                                    CP[k] * VB_prelim[i, j, k + 1]) / SP[k]

    # Update 3D speeds:
    os.UB[...] = UB_prelim[...]
    os.VB[...] = VB_prelim[...]

    # Communicate UB/VB between processes:
    #if doMpi:
    #    mpi.communicate3D(comm, rank, pos, splits, os, sp)

    # Vertically integrated model:
    for subt in range(0, sp.nsub):

        # Communicate 2D fields between processes:
        if doMpi:
            mpi.communicate2D(comm, rank, pos, splits, os, sp)

        deltU = np.zeros(os.HUA.shape)
        deltV = np.zeros(os.HVA.shape)

        if sp.biharmonic:
            (diffU, diffV) = biharmon2D(os, sp, os.UA, os.VA)

        # U direction:
        for i in range(0, os.imax - 1):
            for j in range(1, os.jmax - 1):
                if not os.maskU[i, j, 0]:
                    continue

                # Local values:
                kmx = min(os.kmm[i, j], os.kmm[i + 1,
                                               j]) - 1  # Number of wet layers
                dwad = os.DWA[i, j] + 0.5 * (os.E[i, j] + os.E[i + 1, j])
                val = os.UA[i, j]
                hval = os.HUA[i, j]
                # Weighted average of V:
                averHV = 0
                if os.maskV[i, j - 1, 0]:
                    averHV = averHV + getUV2(os.HVA, i, j - 1,
                                             0) / os.hvSqr[i, j - 1]
                if os.maskV[i + 1, j - 1, 0]:
                    averHV = averHV + getUV2(os.HVA, i + 1, j - 1,
                                             0) / os.hvSqr[i + 1, j - 1]
                if os.maskV[i, j, 0]:
                    averHV = averHV + getUV2(os.HVA, i, j, 0) / os.hvSqr[i, j]
                if os.maskV[i + 1, j, 0]:
                    averHV = averHV + getUV2(os.HVA, i + 1, j,
                                             0) / os.hvSqr[i + 1, j]
                averHV = 0.25 * averHV * os.huSqr[i, j]
                # Unweighted:
                averVA = 0.25 * (getUV2(os.VA, i, j - 1, 0) + getUV2(
                    os.VA, i + 1, j - 1, 0) + getUV2(os.VA, i, j, 0) +
                                 getUV2(os.VA, i + 1, j, 0))
                averVB = 0.25 * (getUV(os.VB, i, j - 1, kmx, 0) + getUV(
                    os.VB, i + 1, j - 1, kmx, 0) + getUV(os.VB, i, j, kmx, 0) +
                                 getUV(os.VB, i + 1, j, kmx, 0))
                # Get bottom current to calculate bottom drag:
                ubot = val + os.UB[i, j, kmx]
                vbot = averVA + averVB
                vvec = math.sqrt(ubot * ubot + vbot * vbot)

                # TODO: depth-integrated equation, support for variable atmospheric pressure

                deltU[i, j] = (
                    dt * 2 * sp.omega * math.sin(sp.phi0) * averHV  # Coriolis
                    + dtdx * 9.81 * dwad *
                    (os.E[i, j] - os.E[i + 1, j])  # External gravity waves
                    - dt * sp.C_b * ubot * vvec  # Bottom friction
                    + dt * dwad * AU[i, j]
                )  # Average rate of change extracted from 3D step

                if sp.biharmonic:
                    deltU[i, j] = deltU[i, j] - dt * dwad * diffU[i, j]
                else:
                    # Estimate the local d2u/dx2 (double derivative):
                    d2u_dx2 = (getUV2(os.UA, i - 1, j, val) - 2 * val +
                               getUV2(os.UA, i + 1, j, val)) / dx2
                    # Estimate the local d2u/dy2 (double derivative):
                    d2u_dy2 = (getUV2(os.UA, i, j - 1, val) - 2 * val +
                               getUV2(os.UA, i, j + 1, val)) / dx2
                    # Calculate diffusion term:
                    deltU[i, j] = deltU[i, j] + dt * os.AM2D[i, j] * (d2u_dx2 +
                                                                      d2u_dy2)

        # V direction:
        for i in range(1, os.imax - 1):
            for j in range(0, os.jmax - 1):
                if not os.maskV[i, j, 0]:
                    continue

                # Local values:
                kmx = min(os.kmm[i, j],
                          os.kmm[i, j + 1]) - 1  # Number of wet layers
                dsad = os.DSA[i, j] + 0.5 * (os.E[i, j] + os.E[i, j + 1])
                val = os.VA[i, j]
                hval = os.HVA[i, j]
                # Weighted average of U:
                averHU = 0
                if os.maskU[i - 1, j, 0]:
                    averHU = averHU + getUV2(os.HUA, i - 1, j,
                                             0) / os.huSqr[i - 1, j]
                if os.maskU[i, j, 0]:
                    averHU = averHU + getUV2(os.HUA, i, j, 0) / os.huSqr[i, j]
                if os.maskU[i - 1, j + 1, 0]:
                    averHU = averHU + getUV2(os.HUA, i - 1, j + 1,
                                             0) / os.huSqr[i - 1, j + 1]
                if os.maskU[i, j + 1, 0]:
                    averHU = averHU + getUV2(os.HUA, i, j + 1,
                                             0) / os.huSqr[i, j + 1]
                averHU = 0.25 * averHU * os.hvSqr[i, j]
                # Unweighted:
                averUA = 0.25 * (getUV2(os.UA, i - 1, j, 0) + getUV2(
                    os.UA, i, j, 0) + getUV2(os.UA, i - 1, j + 1, 0) +
                                 getUV2(os.UA, i, j + 1, 0))
                averUB = 0.25 * (getUV(os.UB, i - 1, j, kmx, 0) + getUV(
                    os.UB, i, j, kmx, 0) + getUV(os.UB, i - 1, j + 1, kmx, 0) +
                                 getUV(os.UB, i, j + 1, kmx, 0))
                # Get bottom current to calculate bottom drag:
                vbot = val + os.VB[i, j, kmx]
                ubot = averUA + averUB
                vvec = math.sqrt(ubot * ubot + vbot * vbot)

                # TODO: depth-integrated equation, support for variable atmospheric pressure

                deltV[i, j] = (
                    -dt * 2 * sp.omega * math.sin(sp.phi0) * averHU  # Coriolis
                    + dtdx * 9.81 * dsad *
                    (os.E[i, j] - os.E[i, j + 1])  # External gravity waves
                    - dt * sp.C_b * vbot * vvec  # Bottom friction
                    + dt * dsad * AV[i, j]
                )  # Average rate of change extracted from 3D step

                if sp.biharmonic:
                    deltV[i, j] = deltV[i, j] - dt * dsad * diffV[i, j]
                else:
                    # Estimate the local d2u/dx2 (double derivative):
                    d2u_dx2 = (getUV2(os.VA, i - 1, j, val) - 2 * val +
                               getUV2(os.VA, i + 1, j, val)) / dx2
                    # Estimate the local d2u/dy2 (double derivative):
                    d2u_dy2 = (getUV2(os.VA, i, j - 1, val) - 2 * val +
                               getUV2(os.VA, i, j + 1, val)) / dx2
                    # Calculate diffusion term:
                    deltV[i, j] = deltV[i, j] + dt * os.AM2D[i, j] * (d2u_dx2 +
                                                                      d2u_dy2)

        # Update HUA:
        os.HUA = os.HUA + deltU

        # Calculate new UA:
        for i in range(0, os.imax - 1):
            for j in range(0, os.jmax):
                if not os.maskU[i, j, 0]:
                    continue
                dwad = os.DWA[i, j] + 0.5 * (os.E[i, j] + os.E[i + 1, j])
                os.UA[i, j] = os.HUA[i, j] / dwad

        # Update HVA:
        os.HVA = os.HVA + deltV

        # Calculate new VA:
        for i in range(0, os.imax):
            for j in range(0, os.jmax - 1):
                if not os.maskV[i, j, 0]:
                    continue
                dsad = os.DSA[i, j] + 0.5 * (os.E[i, j] + os.E[i, j + 1])
                os.VA[i, j] = os.HVA[i, j] / dsad

        # Done with short time step for UA/HUA and VA/HVA.
        # Calculate new elevation:
        for i in range(1, os.imax - 1):
            for j in range(1, os.jmax - 1):
                if os.kmm[i, j] == 0:
                    continue
                os.E[i,
                     j] = os.E[i,
                               j] + dtdx * (os.HUA[i - 1, j] - os.HUA[i, j] +
                                            os.HVA[i, j - 1] - os.HVA[i, j])

        # Update local time variable:
        t = t + dt
        # Update EUV bounds:
        setBounds.setEUVBounds(scenario, fullDims, fullDepth, pos, splits,
                               slice, t, os, sp)

    # Done with depth integrated (short) time steps

    # Recompute U:
    for i in range(0, os.imax - 1):
        for j in range(0, os.jmax):
            for k in range(0, os.kmax):
                if not os.maskU[i, j, k]:
                    # Check we are at the surface layer and there is still current. If so, it's a river outlet.
                    if k == 0 and os.DW[i, j, 0] > 0 and os.HUA[i, j] != 0:
                        os.U[i, j, k] = os.HUA[i, j] / os.DW[i, j, 0]
                    break
                os.U[i, j, k] = os.UA[i, j] + os.UB[i, j, k]

    # Recompute V:
    for i in range(0, os.imax):
        for j in range(0, os.jmax - 1):
            for k in range(0, os.kmax):
                if not os.maskV[i, j, k]:
                    # Check we are at the surface layer and there is still current. If so, it's a river outlet.
                    if k == 0 and os.DS[i, j, 0] > 0 and os.HVA[i, j] != 0:
                        os.V[i, j, k] = os.HVA[i, j] / os.DS[i, j, 0]
                    break
                os.V[i, j, k] = os.VA[i, j] + os.VB[i, j, k]

    # Recompute vertical speeds:
    computeVerticalSpeeds(os, sp)
コード例 #6
0
ファイル: main.py プロジェクト: AshWorkshop/Trandash
def cbRun():
    global count
    global state

    global traded_count
    global pairsDone
    global sell
    global buy
    global balance
    count += 1
    # print(count)
    # time.sleep(1)
    exchangeState = dict()
    mark = {
        "count":
        count,
        "pairsDone": [pairsDone, pairsDone / count],
        "balance": [balance, balance / pairsDone],
        "traded_count":
        [traded_count, traded_count / pairsDone, traded_count / balance],
        "sell": [sells, sells / traded_count],
        "buy": [buys, buys / traded_count]
    }
    print(mark)

    hasData = True

    if state == "GO":
        for exchange, slot in orderBooks.slots.items():
            bids, asks = slot.getOrderBook()
            slot.setOrderBook()
            exchangeState[exchange] = dict()
            if len(bids) == 0:
                hasData = False
                break
            avgBids = calcMean(bids)  #买单
            avgAsks = calcMean(asks)  #卖单

            exchangeState[exchange]['actual'], exchangeState[exchange][
                'avg'] = [bids, asks], [avgBids, avgAsks]
        #print(HuobiBalancesCycle.getData())
        #print(exchangeState)
        #print(GateioBalancesCycle.getData())

        if hasData:
            exchangePairs = verifyExchanges(exchangeState, FEE)
            print(count, exchangePairs)

            if exchangePairs:
                pairsDone += 1
                state = "GO"
                amount = exchangePairs[0][2][1] * 0.1
                exBuy = EXCHANGE[exchangePairs[0][0][BUY]]
                priceBuy = exchangePairs[0][1][BUY]
                #print(exchange.getBalance('usdt'),price,amount)
                exSell = EXCHANGE[exchangePairs[0][0][SELL]]
                priceSell = exchangePairs[0][1][SELL]
                exBalanceSell = 0.0
                exBalanceBuy = 0.0

                balanceSell = BALANCES[exchangePairs[0][0][SELL]].getData()
                balanceBuy = BALANCES[exchangePairs[0][0][BUY]].getData()

                print(balanceSell, balanceBuy)
                if isinstance(balanceSell, dict) and isinstance(
                        balanceBuy, dict):
                    balance += 1
                    exBalanceSell = balanceSell[coinPair[SELL]]
                    exBalanceBuy = balanceBuy[coinPair[BUY]]
                    usdtAmount = balanceBuy[coinPair[BUY]] + balanceSell[
                        coinPair[BUY]]

                #print(isinstance(exBalanceSell,float),isinstance(exBalanceBuy,float))
                #print("SELL",exBalanceSell,"BUY",exBalanceBuy)
                #print(amount,amount*priceBuy)

                if isinstance(exBalanceSell, float) and isinstance(
                        exBalanceBuy, float):
                    if amount <= exBalanceSell and amount * priceBuy <= exBalanceBuy:
                        amount = amount * 0.01
                        reactor.callWhenRunning(buy,
                                                exchange=exBuy,
                                                coinPair=orderBooks.pairs,
                                                price=priceBuy,
                                                amount=amount)
                        reactor.callWhenRunning(sell,
                                                exchange=exSell,
                                                coinPair=orderBooks.pairs,
                                                price=priceSell,
                                                amount=amount)
                        traded_count += 1
                        pairsName = orderBooks.pairs
                        currentTime = datetime.datetime.now().strftime(
                            '%Y-%m-%d %H:%M:%S')  #现在
                        staFile = open('gatoio' + 'huobipro' + str(startTime),
                                       'a+')
                        staFile.write(
                            "%d, pairsName:%s, currentTime:%s, usdtAmount:%f, traded_count:%d\n"
                            % (count, pairsName, currentTime, usdtAmount,
                               traded_count))
                        staFile.close()
                    else:
                        state = "GO"
                        print("Not enough coin/money")
                else:
                    state = "GO"
                    print("No exchange")