コード例 #1
0
def dimensionless_mon(obj, min_ext, max_ext, **kwargs):
    """
    This function takes monitor spectra and converts them to dimensionless
    spectra by dividing each spectrum by the total number of counts within the
    range [min_ext, max_ext]. Then, each spectrum is multiplied by the quantity
    max_ext - min_ext. The units of min_ext and max_ext are assumed to be the
    same as the monitor spectra axis.

    @param obj: Object containing monitor spectra
    @type obj: C{SOM.SOM} or C{SOM.SO}

    @param min_ext: Minimium range and associated error^2 for integrating total
                    counts.
    @type min_ext: C{tuple}

    @param max_ext: Maximium range and associated error^2 for integrating total
                    counts.
    @type max_ext: C{tuple}

    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword units: The expected units for this function. The default for this
                    function is I{Angstroms}.
    @type units: C{string}


    @return: Dimensionless monitor spectra
    @rtype: C{SOM.SOM} or C{SOM.SO}
    """
    
    # import the helper functions
    import hlr_utils

    if obj is None:
        return obj

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    # Setup keyword arguments
    try:
        units = kwargs["units"]
    except KeyError:
        units = "Angstroms"

    # Primary axis for transformation. If a SO is passed, the function, will
    # assume the axis for transformation is at the 0 position
    if o_descr == "SOM":
        axis = hlr_utils.one_d_units(obj, units)
    else:
        axis = 0

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    import array_manip
    import dr_lib
    import utils

    for i in xrange(hlr_utils.get_length(obj)):
        val = hlr_utils.get_value(obj, i, o_descr, "y")
        err2 = hlr_utils.get_err2(obj, i, o_descr, "y")
        x_axis = hlr_utils.get_value(obj, i, o_descr, "x", axis)
        x_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis)
        map_so = hlr_utils.get_map_so(obj, None, i)

        bin_widths = utils.calc_bin_widths(x_axis, x_err2)

        # Scale bin contents by bin width
        value0 = array_manip.mult_ncerr(val, err2,
                                        bin_widths[0], bin_widths[1])

        # Find bin range for extents
        min_index = utils.bisect_helper(x_axis, min_ext[0])
        max_index = utils.bisect_helper(x_axis, max_ext[0])

        # Integrate axis using bin width multiplication
        (asum, asum_err2) = dr_lib.integrate_axis_py(map_so, start=min_index,
                                                     end=max_index, width=True)

        # Get the number of bins in the integration range
        num_bins = max_index - min_index + 1

        asum /= num_bins
        asum_err2 /= (num_bins * num_bins)

        # Divide by sum
        value1 = array_manip.div_ncerr(value0[0], value0[1], asum, asum_err2)

        hlr_utils.result_insert(result, res_descr, value1, map_so, "y")

    return result
コード例 #2
0
def create_param_vs_Y(som, param, param_func, param_axis, **kwargs):
    """
    This function takes a group of single spectrum with any given axes
    (wavelength, energy etc.). The function can optionally rebin those axes to
    a given axis. It then creates a 2D spectrum by using a parameter,
    parameter functiona and a given axis for the lookup locations and places
    each original spectrum in the found location.
    
    @param som: The input object with arbitrary (but same) axis spectra
    @type som: C{SOM.SOM}

    @param param: The parameter that will be used for creating the lookups.
    @type param: C{string}

    @param param_func: The function that will convert the parameter into the
                       values for lookups.
    @type param_func: C{string}

    @param param_axis: The axis that will be searched for the lookup values.
    @type param_axis: C{nessi_list.NessiList}

    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword rebin_axis: An axis to rebin the given spectra to.
    @type rebin_axis: C{nessi_list.NessiList}

    @keyword data_type: The name of the data type which can be either
                        I{histogram}, I{density} or I{coordinate}. The default
                        value will be I{histogram}.
    @type data_type: C{string}

    @keyword pixnorm: A flag to track the number of pixels that contribute to
                      a bin and then normalize the bin by that number.
    @type pixnorm: C{boolean}

    @keyword prnorm: A parameter to track and determine a range (max - min)
                     for each bin the requested parameter axis. The range will
                     then be divided into the final summed spectrum for the
                     given bin.
    @type prnorm: C{string}

    @keyword binnorm: A flag that turns on the scaling of each stripe of the
                      y-axis by the individual bins widths from the y-axis.
    @type binnorm: C{boolean}

    @keyword so_id: The identifier represents a number, string, tuple or other
                    object that describes the resulting C{SO}.
    @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID}
    
    @keyword y_label: The dependent axis label
    @type y_label: C{string}
    
    @keyword y_units: The dependent axis units
    @type y_units: C{string}
    
    @keyword x_labels: The two independent axis labels
    @type x_labels: C{list} of C{string}s
    
    @keyword x_units: The two independent axis units
    @type x_units: C{list} of C{string}s


    @return: A two dimensional spectrum with the parameter as the x-axis and
             the given spectra axes as the y-axis.
    @rtype: C{SOM.SOM}
    """
    import array_manip
    import dr_lib
    import hlr_utils
    import nessi_list
    import SOM
    import utils

    # Check for rebinning axis
    try:
        rebin_axis = kwargs["rebin_axis"]
    except KeyError:
        rebin_axis = None

    # Check for pixnorm flag
    try:
        pixnorm = kwargs["pixnorm"]
    except KeyError:
        pixnorm = False

    try:
        binnorm = kwargs["binnorm"]
    except KeyError:
        binnorm = False        

    # Check for prnorm flag
    try:
        prpar = kwargs["prnorm"]
        prnorm = True
    except KeyError:
        prnorm = False

    # Check dataType keyword argument. An offset will be set to 1 for the
    # histogram type and 0 for either density or coordinate
    try:
        data_type = kwargs["data_type"]
        if data_type.lower() == "histogram":
            offset = 1
        elif data_type.lower() == "density" or \
                 data_type.lower() == "coordinate":
            offset = 0
        else:
            raise RuntimeError("Do not understand data type given: %s" % \
                               data_type)
    # Default is offset for histogram
    except KeyError:
        offset = 1

    # Setup some variables 
    dim = 2
    N_tot = 1

    # Create 2D spectrum object
    so_dim = SOM.SO(dim)

    # Set the axis locations
    param_axis_loc = 0    
    arb_axis_loc = 1

    # Rebin original data to rebin_axis if necessary
    if rebin_axis is not None:
        (som1, som2) = dr_lib.rebin_axis_1D_frac(som, rebin_axis)
        len_arb_axis = len(rebin_axis) - offset
        so_dim.axis[arb_axis_loc].val = rebin_axis
    else:
        som1 = som
        len_arb_axis = len(som[0].axis[0].val) - offset
        so_dim.axis[arb_axis_loc].val = som[0].axis[0].val

    del som

    # Get parameter axis information
    len_param_axis = len(param_axis) - offset
    so_dim.axis[param_axis_loc].val = param_axis

    if pixnorm:
        pixarr = nessi_list.NessiList(len_param_axis)

    if prnorm:
        prarr = []
        for i in xrange(len_param_axis):
            prarr.append(nessi_list.NessiList())
        # Get the parameters for all the spectra
        ppfunc = hlr_utils.__getattribute__("param_array")
        prarr_lookup = ppfunc(som1, prpar)

    # Get the parameter lookup array
    pfunc = hlr_utils.__getattribute__(param_func)
    lookup_array = pfunc(som1, param)

    # Create y and var_y lists from total 2D size
    N_tot = len_param_axis * len_arb_axis
    so_dim.y = nessi_list.NessiList(N_tot)
    so_dim.var_y = nessi_list.NessiList(N_tot)
    if rebin_axis is not None:
        frac_area = nessi_list.NessiList(N_tot)
        frac_area_err2 = nessi_list.NessiList(N_tot)

    # Loop through data and create 2D spectrum
    len_som = hlr_utils.get_length(som1)
    for i in xrange(len_som):
        val = hlr_utils.get_value(som1, i, "SOM", "y")
        err2 = hlr_utils.get_err2(som1, i, "SOM", "y")

        bin_index = utils.bisect_helper(param_axis, lookup_array[i])
        start = bin_index * len_arb_axis

        if pixnorm:
            pixarr[bin_index] += 1

        if prnorm:
            prarr[bin_index].append(prarr_lookup[i])

        (so_dim.y, so_dim.var_y) = array_manip.add_ncerr(so_dim.y,
                                                         so_dim.var_y,
                                                         val,
                                                         err2,
                                                         a_start=start)
        if rebin_axis is not None:
            val1 = hlr_utils.get_value(som2, i, "SOM", "y")
            err1_2 = hlr_utils.get_err2(som2, i, "SOM", "y")
            (frac_area, frac_area_err2) = array_manip.add_ncerr(frac_area,
                                                                frac_area_err2,
                                                                val1,
                                                                err1_2,
                                                                a_start=start)

    if rebin_axis is not None:
        (so_dim.y, so_dim.var_y) = array_manip.div_ncerr(so_dim.y,
                                                         so_dim.var_y,
                                                         frac_area,
                                                         frac_area_err2)

    # If parameter range normalization enabled, find the range for the
    # parameter
    if prnorm:
        import math
        prrange = nessi_list.NessiList(len_param_axis)
        for i in xrange(len(prrange)):
            try:
                max_val = max(prarr[i])
            except ValueError:
                max_val = 0.0
            try:
                min_val = min(prarr[i])
            except ValueError:
                min_val = 0.0
            prrange[i] = math.fabs(max_val - min_val)

    # If pixel normalization tracking enabled, divided slices by pixel counts
    if pixnorm or prnorm:
        tmp_y = nessi_list.NessiList(N_tot)
        tmp_var_y = nessi_list.NessiList(N_tot)

        for i in range(len_param_axis):
            start = i * len_arb_axis
            end = (i + 1) * len_arb_axis

            slice_y = so_dim.y[start:end]
            slice_var_y = so_dim.var_y[start:end]

            divconst = 1.0
            
            if pixnorm:
                divconst *= pixarr[i]
            # Scale division constant if parameter range normalization enabled
            if prnorm:
                divconst *= prrange[i]

            (dslice_y, dslice_var_y) = array_manip.div_ncerr(slice_y,
                                                             slice_var_y,
                                                             divconst,
                                                             0.0)

            (tmp_y, tmp_var_y) = array_manip.add_ncerr(tmp_y,
                                                       tmp_var_y,
                                                       dslice_y,
                                                       dslice_var_y,
                                                       a_start=start)

        so_dim.y = tmp_y
        so_dim.var_y = tmp_var_y

    if binnorm:
        tmp_y = nessi_list.NessiList(N_tot)
        tmp_var_y = nessi_list.NessiList(N_tot)
        
        if rebin_axis is not None:
            bin_const = utils.calc_bin_widths(rebin_axis)
        else:
            bin_const = utils.calc_bin_widths(som1[0].axis[1].val)

        for i in range(len_param_axis):
            start = i * len_arb_axis
            end = (i + 1) * len_arb_axis
            
            slice_y = so_dim.y[start:end]
            slice_var_y = so_dim.var_y[start:end]
            
            (dslice_y, dslice_var_y) = array_manip.mult_ncerr(slice_y,
                                                              slice_var_y,
                                                              bin_const[0],
                                                              bin_const[1])
            
            (tmp_y, tmp_var_y) = array_manip.add_ncerr(tmp_y,
                                                       tmp_var_y,
                                                       dslice_y,
                                                       dslice_var_y,
                                                       a_start=start)

        so_dim.y = tmp_y
        so_dim.var_y = tmp_var_y

    # Create final 2D spectrum object container
    comb_som = SOM.SOM()
    comb_som.copyAttributes(som1)

    del som1

    # Check for so_id keyword argument
    try:
        so_dim.id = kwargs["so_id"]
    except KeyError:
        so_dim.id = 0

    # Check for y_label keyword argument
    try:
        comb_som.setYLabel(kwargs["y_label"])
    except KeyError:        
        comb_som.setYLabel("Counts")

    # Check for y_units keyword argument
    try:
        comb_som.setYUnits(kwargs["y_units"])
    except KeyError:
        comb_som.setYUnits("Counts / Arb")

    # Check for x_label keyword argument
    try:
        comb_som.setAllAxisLabels(kwargs["x_labels"])
    except KeyError:
        comb_som.setAllAxisLabels(["Parameter", "Arbitrary"])

    # Check for x_units keyword argument
    try:
        comb_som.setAllAxisUnits(kwargs["x_units"])
    except KeyError:
        comb_som.setAllAxisUnits(["Arb", "Arb"])

    comb_som.append(so_dim)

    del so_dim

    return comb_som
コード例 #3
0
def create_E_vs_Q_dgs(som, E_i, Q_final, **kwargs):
    """
    This function starts with the rebinned energy transfer and turns this
    into a 2D spectra with E and Q axes for DGS instruments.

    @param som: The input object with initial IGS wavelength axis
    @type som: C{SOM.SOM}

    @param E_i: The initial energy for the given data.
    @type E_i: C{tuple}

    @param Q_final: The momentum transfer axis to rebin the data to
    @type Q_final: C{nessi_list.NessiList}

    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword corner_angles: The object that contains the corner geometry
                            information.
    @type corner_angles: C{dict}

    @keyword so_id: The identifier represents a number, string, tuple or other
                    object that describes the resulting C{SO}
    @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID}
    
    @keyword y_label: The y axis label
    @type y_label: C{string}
    
    @keyword y_units: The y axis units
    @type y_units: C{string}
    
    @keyword x_labels: This is a list of names that sets the individual x axis
    labels
    @type x_labels: C{list} of C{string}s
    
    @keyword x_units: This is a list of names that sets the individual x axis
    units
    @type x_units: C{list} of C{string}s

    @keyword split: This flag causes the counts and the fractional area to
                    be written out into separate files.
    @type split: C{boolean}

    @keyword configure: This is the object containing the driver configuration.
    @type configure: C{Configure}


    @return: Object containing a 2D C{SO} with E and Q axes
    @rtype: C{SOM.SOM}    
    """
    import array_manip
    import axis_manip
    import common_lib
    import hlr_utils
    import nessi_list
    import SOM
    import utils

    # Check for keywords
    corner_angles = kwargs["corner_angles"]
    configure = kwargs.get("configure")
    split = kwargs.get("split", False)

    # Setup output object
    so_dim = SOM.SO(2)

    so_dim.axis[0].val = Q_final
    so_dim.axis[1].val = som[0].axis[0].val # E_t

    # Calculate total 2D array size
    N_tot = (len(so_dim.axis[0].val) - 1) * (len(so_dim.axis[1].val) - 1)

    # Create y and var_y lists from total 2D size
    so_dim.y = nessi_list.NessiList(N_tot)
    so_dim.var_y = nessi_list.NessiList(N_tot)

    # Create area sum and errors for the area sum lists from total 2D size
    area_sum = nessi_list.NessiList(N_tot)
    area_sum_err2 = nessi_list.NessiList(N_tot)

    # Convert initial energy to initial wavevector
    l_i = common_lib.energy_to_wavelength(E_i)
    k_i = common_lib.wavelength_to_scalar_k(l_i)

    # Since all the data is rebinned to the same energy transfer axis, we can
    # calculate the final energy axis once
    E_t = som[0].axis[0].val
    if som[0].axis[0].var is not None:
        E_t_err2 = som[0].axis[0].var
    else:
        E_t_err2 = nessi_list.NessiList(len(E_t))        

    # Get the bin width arrays from E_t
    (E_t_bw, E_t_bw_err2) = utils.calc_bin_widths(E_t)

    E_f = array_manip.sub_ncerr(E_i[0], E_i[1], E_t, E_t_err2)
    
    # Now we can get the final wavevector
    l_f = axis_manip.energy_to_wavelength(E_f[0], E_f[1])
    k_f = axis_manip.wavelength_to_scalar_k(l_f[0], l_f[1])

    # Output position for Q
    X = 0

    # Iterate though the data
    len_som = hlr_utils.get_length(som)
    for i in xrange(len_som):
        map_so = hlr_utils.get_map_so(som, None, i)

        yval = hlr_utils.get_value(som, i, "SOM", "y")
        yerr2 = hlr_utils.get_err2(som, i, "SOM", "y")

        cangles = corner_angles[str(map_so.id)]

        avg_theta1 = (cangles.getPolar(0) + cangles.getPolar(1)) / 2.0
        avg_theta2 = (cangles.getPolar(2) + cangles.getPolar(3)) / 2.0
        
        Q1 = axis_manip.init_scatt_wavevector_to_scalar_Q(k_i[0],
                                                          k_i[1],
                                                          k_f[0][:-1],
                                                          k_f[1][:-1],
                                                          avg_theta2,
                                                          0.0)
        
        Q2 = axis_manip.init_scatt_wavevector_to_scalar_Q(k_i[0],
                                                          k_i[1],
                                                          k_f[0][:-1],
                                                          k_f[1][:-1],
                                                          avg_theta1,
                                                          0.0)
        
        Q3 = axis_manip.init_scatt_wavevector_to_scalar_Q(k_i[0],
                                                          k_i[1],
                                                          k_f[0][1:],
                                                          k_f[1][1:],
                                                          avg_theta1,
                                                          0.0)

        Q4 = axis_manip.init_scatt_wavevector_to_scalar_Q(k_i[0],
                                                          k_i[1],
                                                          k_f[0][1:],
                                                          k_f[1][1:],
                                                          avg_theta2,
                                                          0.0)

        # Calculate the area of the E,Q polygons
        (A, A_err2) = utils.calc_eq_jacobian_dgs(E_t[:-1], E_t[:-1], 
                                                 E_t[1:], E_t[1:],
                                                 Q1[X], Q2[X], Q3[X], Q4[X])

        # Apply the Jacobian: C/dE_t * dE_t / A(EQ) = C/A(EQ)
        (jac_ratio, jac_ratio_err2) = array_manip.div_ncerr(E_t_bw,
                                                            E_t_bw_err2,
                                                            A, A_err2)
        (counts, counts_err2) = array_manip.mult_ncerr(yval, yerr2,
                                                       jac_ratio,
                                                       jac_ratio_err2)
        
        try:
            (y_2d, y_2d_err2,
             area_new,
             bin_count) = axis_manip.rebin_2D_quad_to_rectlin(Q1[X], E_t[:-1],
                                                           Q2[X], E_t[:-1],
                                                           Q3[X], E_t[1:],
                                                           Q4[X], E_t[1:],
                                                           counts,
                                                           counts_err2,
                                                           so_dim.axis[0].val,
                                                           so_dim.axis[1].val)
            
            del bin_count
            
        except IndexError, e:
            # Get the offending index from the error message
            index = int(str(e).split()[1].split('index')[-1].strip('[]'))
            print "Id:", map_so.id
            print "Index:", index
            print "Verticies: %f, %f, %f, %f, %f, %f, %f, %f" % (Q1[X][index],
                                                              E_t[:-1][index],
                                                                 Q2[X][index],
                                                              E_t[:-1][index],
                                                                 Q3[X][index],
                                                              E_t[1:][index],
                                                                 Q4[X][index],
                                                              E_t[1:][index])
            raise IndexError(str(e))

        # Add in together with previous results
        (so_dim.y, so_dim.var_y) = array_manip.add_ncerr(so_dim.y,
                                                         so_dim.var_y,
                                                         y_2d, y_2d_err2)
        
        (area_sum, area_sum_err2) = array_manip.add_ncerr(area_sum,
                                                          area_sum_err2,
                                                          area_new,
                                                          area_sum_err2)
コード例 #4
0
def create_E_vs_Q_igs(som, *args, **kwargs):
    """
    This function starts with the initial IGS wavelength axis and turns this
    into a 2D spectra with E and Q axes.

    @param som: The input object with initial IGS wavelength axis
    @type som: C{SOM.SOM}

    @param args: A mandatory list of axes for rebinning. There is a particular
                 order to them. They should be present in the following order:

                 Without errors
                   1. Energy transfer
                   2. Momentum transfer
                 With errors
                   1. Energy transfer
                   2. Energy transfer error^2
                   3. Momentum transfer
                   4. Momentum transfer error ^2
    @type args: C{nessi_list.NessiList}s
       
    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword withXVar: Flag for whether the function should be expecting the
                       associated axes to have errors. The default value will
                       be I{False}.
    @type withXVar: C{boolean}

    @keyword data_type: Name of the data type which can be either I{histogram},
                        I{density} or I{coordinate}. The default value will be
                        I{histogram}
    @type data_type: C{string}
    
    @keyword Q_filter: Flag to turn on or off Q filtering. The default behavior
                       is I{True}.
    @type Q_filter: C{boolean}
    
    @keyword so_id: The identifier represents a number, string, tuple or other
                    object that describes the resulting C{SO}
    @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID}
    
    @keyword y_label: The y axis label
    @type y_label: C{string}
    
    @keyword y_units: The y axis units
    @type y_units: C{string}
    
    @keyword x_labels: This is a list of names that sets the individual x axis
    labels
    @type x_labels: C{list} of C{string}s
    
    @keyword x_units: This is a list of names that sets the individual x axis
    units
    @type x_units: C{list} of C{string}s

    @keyword split: This flag causes the counts and the fractional area to
                    be written out into separate files.
    @type split: C{boolean}

    @keyword configure: This is the object containing the driver configuration.
    @type configure: C{Configure}


    @return: Object containing a 2D C{SO} with E and Q axes
    @rtype: C{SOM.SOM}


    @raise RuntimeError: Anything other than a C{SOM} is passed to the function
    
    @raise RuntimeError: An instrument is not contained in the C{SOM}
    """
    import nessi_list

    # Setup some variables 
    dim = 2
    N_y = []
    N_tot = 1
    N_args = len(args)

    # Get T0 slope in order to calculate dT = dT_i + dT_0
    try:
        t_0_slope = som.attr_list["Time_zero_slope"][0]
        t_0_slope_err2 = som.attr_list["Time_zero_slope"][1]
    except KeyError:
        t_0_slope = float(0.0)
        t_0_slope_err2 = float(0.0)

    # Check withXVar keyword argument and also check number of given args.
    # Set xvar to the appropriate value
    try:
        value = kwargs["withXVar"]
        if value.lower() == "true":
            if N_args != 4:
                raise RuntimeError("Since you have requested x errors, 4 x "\
                                   +"axes must be provided.")
            else:
                xvar = True
        elif value.lower() == "false":
            if N_args != 2:
                raise RuntimeError("Since you did not requested x errors, 2 "\
                                   +"x axes must be provided.")
            else:
                xvar = False
        else:
            raise RuntimeError("Do not understand given parameter %s" % \
                               value)
    except KeyError:
        if N_args != 2:
            raise RuntimeError("Since you did not requested x errors, 2 "\
                               +"x axes must be provided.")
        else:
            xvar = False

    # Check dataType keyword argument. An offset will be set to 1 for the
    # histogram type and 0 for either density or coordinate
    try:
        data_type = kwargs["data_type"]
        if data_type.lower() == "histogram":
            offset = 1
        elif data_type.lower() == "density" or \
                 data_type.lower() == "coordinate":
            offset = 0
        else:
            raise RuntimeError("Do not understand data type given: %s" % \
                               data_type)
    # Default is offset for histogram
    except KeyError:
        offset = 1

    try:
        Q_filter = kwargs["Q_filter"]
    except KeyError:
        Q_filter = True

    # Check for split keyword
    try:
        split = kwargs["split"]
    except KeyError:
        split = False

    # Check for configure keyword
    try:
        configure = kwargs["configure"]
    except KeyError:
        configure = None

    so_dim = SOM.SO(dim)

    for i in range(dim):
        # Set the x-axis arguments from the *args list into the new SO
        if not xvar:
            # Axis positions are 1 (Q) and 0 (E)
            position = dim - i - 1
            so_dim.axis[i].val = args[position]
        else:
            # Axis positions are 2 (Q), 3 (eQ), 0 (E), 1 (eE)
            position = dim - 2 * i
            so_dim.axis[i].val = args[position]
            so_dim.axis[i].var = args[position + 1]

        # Set individual value axis sizes (not x-axis size)
        N_y.append(len(args[position]) - offset)

        # Calculate total 2D array size
        N_tot = N_tot * N_y[-1]

    # Create y and var_y lists from total 2D size
    so_dim.y = nessi_list.NessiList(N_tot)
    so_dim.var_y = nessi_list.NessiList(N_tot)
    
    # Create area sum and errors for the area sum lists from total 2D size
    area_sum = nessi_list.NessiList(N_tot)
    area_sum_err2 = nessi_list.NessiList(N_tot)

    # Create area sum and errors for the area sum lists from total 2D size
    bin_count = nessi_list.NessiList(N_tot)
    bin_count_err2 = nessi_list.NessiList(N_tot)
    
    inst = som.attr_list.instrument
    lambda_final = som.attr_list["Wavelength_final"]
    inst_name = inst.get_name()

    import bisect
    import math

    import dr_lib
    import utils

    arr_len = 0
    #: Vector of zeros for function calculations
    zero_vec = None
    
    for j in xrange(hlr_utils.get_length(som)):
        # Get counts
        counts = hlr_utils.get_value(som, j, "SOM", "y")
        counts_err2 = hlr_utils.get_err2(som, j, "SOM", "y")

        arr_len = len(counts)
        zero_vec = nessi_list.NessiList(arr_len)

        # Get mapping SO
        map_so = hlr_utils.get_map_so(som, None, j)

        # Get lambda_i
        l_i = hlr_utils.get_value(som, j, "SOM", "x")
        l_i_err2 = hlr_utils.get_err2(som, j, "SOM", "x")
        
        # Get lambda_f from instrument information
        l_f_tuple = hlr_utils.get_special(lambda_final, map_so)
        l_f = l_f_tuple[0]
        l_f_err2 = l_f_tuple[1]
        
        # Get source to sample distance
        (L_s, L_s_err2) = hlr_utils.get_parameter("primary", map_so, inst)

        # Get sample to detector distance
        L_d_tuple = hlr_utils.get_parameter("secondary", map_so, inst)
        L_d = L_d_tuple[0]

        # Get polar angle from instrument information
        (angle, angle_err2) = hlr_utils.get_parameter("polar", map_so, inst)

        # Get the detector pixel height
        dh_tuple = hlr_utils.get_parameter("dh", map_so, inst)
        dh = dh_tuple[0]
        # Need dh in units of Angstrom
        dh *= 1e10

        # Calculate T_i
        (T_i, T_i_err2) = axis_manip.wavelength_to_tof(l_i, l_i_err2, 
                                                       L_s, L_s_err2)

        # Scale counts by lambda_f / lambda_i
        (l_i_bc, l_i_bc_err2) = utils.calc_bin_centers(l_i, l_i_err2)

        (ratio, ratio_err2) = array_manip.div_ncerr(l_f, l_f_err2,
                                                    l_i_bc, l_i_bc_err2)

        (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2,
                                                       ratio, ratio_err2)

        # Calculate E_i
        (E_i, E_i_err2) = axis_manip.wavelength_to_energy(l_i, l_i_err2)

        # Calculate E_f
        (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f, l_f_err2)

        # Calculate E_t
        (E_t, E_t_err2) = array_manip.sub_ncerr(E_i, E_i_err2, E_f, E_f_err2)

        if inst_name == "BSS":
            # Convert E_t from meV to ueV
            (E_t, E_t_err2) = array_manip.mult_ncerr(E_t, E_t_err2,
                                                     1000.0, 0.0)
            (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2,
                                                           1.0/1000.0, 0.0)

        # Convert lambda_i to k_i
        (k_i, k_i_err2) = axis_manip.wavelength_to_scalar_k(l_i, l_i_err2)

        # Convert lambda_f to k_f
        (k_f, k_f_err2) = axis_manip.wavelength_to_scalar_k(l_f, l_f_err2)

        # Convert k_i and k_f to Q
        (Q, Q_err2) = axis_manip.init_scatt_wavevector_to_scalar_Q(k_i,
                                                                   k_i_err2,
                                                                   k_f,
                                                                   k_f_err2,
                                                                   angle,
                                                                   angle_err2)

        # Calculate dT = dT_0 + dT_i
        dT_i = utils.calc_bin_widths(T_i, T_i_err2)

        (l_i_bw, l_i_bw_err2) = utils.calc_bin_widths(l_i, l_i_err2)
        dT_0 = array_manip.mult_ncerr(l_i_bw, l_i_bw_err2,
                                      t_0_slope, t_0_slope_err2)

        dT_tuple = array_manip.add_ncerr(dT_i[0], dT_i[1], dT_0[0], dT_0[1])
        dT = dT_tuple[0]

        # Calculate Jacobian
        if inst_name == "BSS":
            (x_1, x_2,
             x_3, x_4) = dr_lib.calc_BSS_coeffs(map_so, inst, (E_i, E_i_err2),
                                                (Q, Q_err2), (k_i, k_i_err2),
                                                (T_i, T_i_err2), dh, angle,
                                                E_f, k_f, l_f, L_s, L_d,
                                                t_0_slope, zero_vec)
        else:
            raise RuntimeError("Do not know how to calculate x_i "\
                               +"coefficients for instrument %s" % inst_name)

        (A, A_err2) = dr_lib.calc_EQ_Jacobian(x_1, x_2, x_3, x_4, dT, dh,
                                              zero_vec)
        
        # Apply Jacobian: C/dlam * dlam / A(EQ) = C/EQ
        (jac_ratio, jac_ratio_err2) = array_manip.div_ncerr(l_i_bw,
                                                            l_i_bw_err2,
                                                            A, A_err2)
        (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2,
                                                       jac_ratio,
                                                       jac_ratio_err2)
        
        # Reverse counts, E_t, k_i and Q
        E_t = axis_manip.reverse_array_cp(E_t)
        E_t_err2 = axis_manip.reverse_array_cp(E_t_err2)
        Q = axis_manip.reverse_array_cp(Q)
        Q_err2 = axis_manip.reverse_array_cp(Q_err2)        
        counts = axis_manip.reverse_array_cp(counts)
        counts_err2 = axis_manip.reverse_array_cp(counts_err2)
        k_i = axis_manip.reverse_array_cp(k_i)
        x_1 = axis_manip.reverse_array_cp(x_1)
        x_2 = axis_manip.reverse_array_cp(x_2)
        x_3 = axis_manip.reverse_array_cp(x_3)
        x_4 = axis_manip.reverse_array_cp(x_4)
        dT = axis_manip.reverse_array_cp(dT)        

        # Filter for duplicate Q values
        if Q_filter:
            k_i_cutoff = k_f * math.cos(angle)
            k_i_cutbin = bisect.bisect(k_i, k_i_cutoff)
            
            counts.__delslice__(0, k_i_cutbin)
            counts_err2.__delslice__(0, k_i_cutbin)
            Q.__delslice__(0, k_i_cutbin)
            Q_err2.__delslice__(0, k_i_cutbin)
            E_t.__delslice__(0, k_i_cutbin)
            E_t_err2.__delslice__(0, k_i_cutbin)
            x_1.__delslice__(0, k_i_cutbin)
            x_2.__delslice__(0, k_i_cutbin)
            x_3.__delslice__(0, k_i_cutbin)
            x_4.__delslice__(0, k_i_cutbin)            
            dT.__delslice__(0, k_i_cutbin)
            zero_vec.__delslice__(0, k_i_cutbin)

        try:
            if inst_name == "BSS":
                ((Q_1, E_t_1),
                 (Q_2, E_t_2),
                 (Q_3, E_t_3),
                 (Q_4, E_t_4)) = dr_lib.calc_BSS_EQ_verticies((E_t, E_t_err2),
                                                              (Q, Q_err2), x_1,
                                                              x_2, x_3, x_4,
                                                              dT, dh, zero_vec)
            else:
                raise RuntimeError("Do not know how to calculate (Q_i, "\
                                   +"E_t_i) verticies for instrument %s" \
                                   % inst_name)

        except IndexError:
            # All the data got Q filtered, move on
            continue

        try:
            (y_2d, y_2d_err2,
             area_new,
             bin_count_new) = axis_manip.rebin_2D_quad_to_rectlin(Q_1, E_t_1,
                                                           Q_2, E_t_2,
                                                           Q_3, E_t_3,
                                                           Q_4, E_t_4,
                                                           counts,
                                                           counts_err2,
                                                           so_dim.axis[0].val,
                                                           so_dim.axis[1].val)
        except IndexError, e:
            # Get the offending index from the error message
            index = int(str(e).split()[1].split('index')[-1].strip('[]'))
            print "Id:", map_so.id
            print "Index:", index
            print "Verticies: %f, %f, %f, %f, %f, %f, %f, %f" % (Q_1[index],
                                                                 E_t_1[index],
                                                                 Q_2[index],
                                                                 E_t_2[index],
                                                                 Q_3[index],
                                                                 E_t_3[index],
                                                                 Q_4[index],
                                                                 E_t_4[index])
            raise IndexError(str(e))

        # Add in together with previous results
        (so_dim.y, so_dim.var_y) = array_manip.add_ncerr(so_dim.y,
                                                         so_dim.var_y,
                                                         y_2d, y_2d_err2)
        
        (area_sum, area_sum_err2) = array_manip.add_ncerr(area_sum,
                                                          area_sum_err2,
                                                          area_new,
                                                          area_sum_err2)

        if configure.dump_pix_contrib or configure.scale_sqe:
            if inst_name == "BSS":
                dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst)
                (bin_count_new,
                 bin_count_err2) = array_manip.mult_ncerr(bin_count_new,
                                                          bin_count_err2,
                                                          dOmega, 0.0)
                
                (bin_count,
                 bin_count_err2) = array_manip.add_ncerr(bin_count,
                                                         bin_count_err2,
                                                         bin_count_new,
                                                         bin_count_err2)
        else:
            del bin_count_new
コード例 #5
0
def create_E_vs_Q_igs(som, *args, **kwargs):
    """
    This function starts with the initial IGS wavelength axis and turns this
    into a 2D spectra with E and Q axes.

    @param som: The input object with initial IGS wavelength axis
    @type som: C{SOM.SOM}

    @param args: A mandatory list of axes for rebinning. There is a particular
                 order to them. They should be present in the following order:

                 Without errors
                   1. Energy transfer
                   2. Momentum transfer
                 With errors
                   1. Energy transfer
                   2. Energy transfer error^2
                   3. Momentum transfer
                   4. Momentum transfer error ^2
    @type args: C{nessi_list.NessiList}s
       
    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword withXVar: Flag for whether the function should be expecting the
                       associated axes to have errors. The default value will
                       be I{False}.
    @type withXVar: C{boolean}

    @keyword data_type: Name of the data type which can be either I{histogram},
                        I{density} or I{coordinate}. The default value will be
                        I{histogram}
    @type data_type: C{string}
    
    @keyword Q_filter: Flag to turn on or off Q filtering. The default behavior
                       is I{True}.
    @type Q_filter: C{boolean}
    
    @keyword so_id: The identifier represents a number, string, tuple or other
                    object that describes the resulting C{SO}
    @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID}
    
    @keyword y_label: The y axis label
    @type y_label: C{string}
    
    @keyword y_units: The y axis units
    @type y_units: C{string}
    
    @keyword x_labels: This is a list of names that sets the individual x axis
    labels
    @type x_labels: C{list} of C{string}s
    
    @keyword x_units: This is a list of names that sets the individual x axis
    units
    @type x_units: C{list} of C{string}s

    @keyword split: This flag causes the counts and the fractional area to
                    be written out into separate files.
    @type split: C{boolean}

    @keyword configure: This is the object containing the driver configuration.
    @type configure: C{Configure}


    @return: Object containing a 2D C{SO} with E and Q axes
    @rtype: C{SOM.SOM}


    @raise RuntimeError: Anything other than a C{SOM} is passed to the function
    
    @raise RuntimeError: An instrument is not contained in the C{SOM}
    """
    import nessi_list

    # Setup some variables
    dim = 2
    N_y = []
    N_tot = 1
    N_args = len(args)

    # Get T0 slope in order to calculate dT = dT_i + dT_0
    try:
        t_0_slope = som.attr_list["Time_zero_slope"][0]
        t_0_slope_err2 = som.attr_list["Time_zero_slope"][1]
    except KeyError:
        t_0_slope = float(0.0)
        t_0_slope_err2 = float(0.0)

    # Check withXVar keyword argument and also check number of given args.
    # Set xvar to the appropriate value
    try:
        value = kwargs["withXVar"]
        if value.lower() == "true":
            if N_args != 4:
                raise RuntimeError("Since you have requested x errors, 4 x "\
                                   +"axes must be provided.")
            else:
                xvar = True
        elif value.lower() == "false":
            if N_args != 2:
                raise RuntimeError("Since you did not requested x errors, 2 "\
                                   +"x axes must be provided.")
            else:
                xvar = False
        else:
            raise RuntimeError("Do not understand given parameter %s" % \
                               value)
    except KeyError:
        if N_args != 2:
            raise RuntimeError("Since you did not requested x errors, 2 "\
                               +"x axes must be provided.")
        else:
            xvar = False

    # Check dataType keyword argument. An offset will be set to 1 for the
    # histogram type and 0 for either density or coordinate
    try:
        data_type = kwargs["data_type"]
        if data_type.lower() == "histogram":
            offset = 1
        elif data_type.lower() == "density" or \
                 data_type.lower() == "coordinate":
            offset = 0
        else:
            raise RuntimeError("Do not understand data type given: %s" % \
                               data_type)
    # Default is offset for histogram
    except KeyError:
        offset = 1

    try:
        Q_filter = kwargs["Q_filter"]
    except KeyError:
        Q_filter = True

    # Check for split keyword
    try:
        split = kwargs["split"]
    except KeyError:
        split = False

    # Check for configure keyword
    try:
        configure = kwargs["configure"]
    except KeyError:
        configure = None

    so_dim = SOM.SO(dim)

    for i in range(dim):
        # Set the x-axis arguments from the *args list into the new SO
        if not xvar:
            # Axis positions are 1 (Q) and 0 (E)
            position = dim - i - 1
            so_dim.axis[i].val = args[position]
        else:
            # Axis positions are 2 (Q), 3 (eQ), 0 (E), 1 (eE)
            position = dim - 2 * i
            so_dim.axis[i].val = args[position]
            so_dim.axis[i].var = args[position + 1]

        # Set individual value axis sizes (not x-axis size)
        N_y.append(len(args[position]) - offset)

        # Calculate total 2D array size
        N_tot = N_tot * N_y[-1]

    # Create y and var_y lists from total 2D size
    so_dim.y = nessi_list.NessiList(N_tot)
    so_dim.var_y = nessi_list.NessiList(N_tot)

    # Create area sum and errors for the area sum lists from total 2D size
    area_sum = nessi_list.NessiList(N_tot)
    area_sum_err2 = nessi_list.NessiList(N_tot)

    # Create area sum and errors for the area sum lists from total 2D size
    bin_count = nessi_list.NessiList(N_tot)
    bin_count_err2 = nessi_list.NessiList(N_tot)

    inst = som.attr_list.instrument
    lambda_final = som.attr_list["Wavelength_final"]
    inst_name = inst.get_name()

    import bisect
    import math

    import dr_lib
    import utils

    arr_len = 0
    #: Vector of zeros for function calculations
    zero_vec = None

    for j in xrange(hlr_utils.get_length(som)):
        # Get counts
        counts = hlr_utils.get_value(som, j, "SOM", "y")
        counts_err2 = hlr_utils.get_err2(som, j, "SOM", "y")

        arr_len = len(counts)
        zero_vec = nessi_list.NessiList(arr_len)

        # Get mapping SO
        map_so = hlr_utils.get_map_so(som, None, j)

        # Get lambda_i
        l_i = hlr_utils.get_value(som, j, "SOM", "x")
        l_i_err2 = hlr_utils.get_err2(som, j, "SOM", "x")

        # Get lambda_f from instrument information
        l_f_tuple = hlr_utils.get_special(lambda_final, map_so)
        l_f = l_f_tuple[0]
        l_f_err2 = l_f_tuple[1]

        # Get source to sample distance
        (L_s, L_s_err2) = hlr_utils.get_parameter("primary", map_so, inst)

        # Get sample to detector distance
        L_d_tuple = hlr_utils.get_parameter("secondary", map_so, inst)
        L_d = L_d_tuple[0]

        # Get polar angle from instrument information
        (angle, angle_err2) = hlr_utils.get_parameter("polar", map_so, inst)

        # Get the detector pixel height
        dh_tuple = hlr_utils.get_parameter("dh", map_so, inst)
        dh = dh_tuple[0]
        # Need dh in units of Angstrom
        dh *= 1e10

        # Calculate T_i
        (T_i, T_i_err2) = axis_manip.wavelength_to_tof(l_i, l_i_err2, L_s,
                                                       L_s_err2)

        # Scale counts by lambda_f / lambda_i
        (l_i_bc, l_i_bc_err2) = utils.calc_bin_centers(l_i, l_i_err2)

        (ratio, ratio_err2) = array_manip.div_ncerr(l_f, l_f_err2, l_i_bc,
                                                    l_i_bc_err2)

        (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2,
                                                       ratio, ratio_err2)

        # Calculate E_i
        (E_i, E_i_err2) = axis_manip.wavelength_to_energy(l_i, l_i_err2)

        # Calculate E_f
        (E_f, E_f_err2) = axis_manip.wavelength_to_energy(l_f, l_f_err2)

        # Calculate E_t
        (E_t, E_t_err2) = array_manip.sub_ncerr(E_i, E_i_err2, E_f, E_f_err2)

        if inst_name == "BSS":
            # Convert E_t from meV to ueV
            (E_t, E_t_err2) = array_manip.mult_ncerr(E_t, E_t_err2, 1000.0,
                                                     0.0)
            (counts,
             counts_err2) = array_manip.mult_ncerr(counts, counts_err2,
                                                   1.0 / 1000.0, 0.0)

        # Convert lambda_i to k_i
        (k_i, k_i_err2) = axis_manip.wavelength_to_scalar_k(l_i, l_i_err2)

        # Convert lambda_f to k_f
        (k_f, k_f_err2) = axis_manip.wavelength_to_scalar_k(l_f, l_f_err2)

        # Convert k_i and k_f to Q
        (Q, Q_err2) = axis_manip.init_scatt_wavevector_to_scalar_Q(
            k_i, k_i_err2, k_f, k_f_err2, angle, angle_err2)

        # Calculate dT = dT_0 + dT_i
        dT_i = utils.calc_bin_widths(T_i, T_i_err2)

        (l_i_bw, l_i_bw_err2) = utils.calc_bin_widths(l_i, l_i_err2)
        dT_0 = array_manip.mult_ncerr(l_i_bw, l_i_bw_err2, t_0_slope,
                                      t_0_slope_err2)

        dT_tuple = array_manip.add_ncerr(dT_i[0], dT_i[1], dT_0[0], dT_0[1])
        dT = dT_tuple[0]

        # Calculate Jacobian
        if inst_name == "BSS":
            (x_1, x_2, x_3, x_4) = dr_lib.calc_BSS_coeffs(
                map_so, inst, (E_i, E_i_err2), (Q, Q_err2), (k_i, k_i_err2),
                (T_i, T_i_err2), dh, angle, E_f, k_f, l_f, L_s, L_d, t_0_slope,
                zero_vec)
        else:
            raise RuntimeError("Do not know how to calculate x_i "\
                               +"coefficients for instrument %s" % inst_name)

        (A, A_err2) = dr_lib.calc_EQ_Jacobian(x_1, x_2, x_3, x_4, dT, dh,
                                              zero_vec)

        # Apply Jacobian: C/dlam * dlam / A(EQ) = C/EQ
        (jac_ratio,
         jac_ratio_err2) = array_manip.div_ncerr(l_i_bw, l_i_bw_err2, A,
                                                 A_err2)
        (counts, counts_err2) = array_manip.mult_ncerr(counts, counts_err2,
                                                       jac_ratio,
                                                       jac_ratio_err2)

        # Reverse counts, E_t, k_i and Q
        E_t = axis_manip.reverse_array_cp(E_t)
        E_t_err2 = axis_manip.reverse_array_cp(E_t_err2)
        Q = axis_manip.reverse_array_cp(Q)
        Q_err2 = axis_manip.reverse_array_cp(Q_err2)
        counts = axis_manip.reverse_array_cp(counts)
        counts_err2 = axis_manip.reverse_array_cp(counts_err2)
        k_i = axis_manip.reverse_array_cp(k_i)
        x_1 = axis_manip.reverse_array_cp(x_1)
        x_2 = axis_manip.reverse_array_cp(x_2)
        x_3 = axis_manip.reverse_array_cp(x_3)
        x_4 = axis_manip.reverse_array_cp(x_4)
        dT = axis_manip.reverse_array_cp(dT)

        # Filter for duplicate Q values
        if Q_filter:
            k_i_cutoff = k_f * math.cos(angle)
            k_i_cutbin = bisect.bisect(k_i, k_i_cutoff)

            counts.__delslice__(0, k_i_cutbin)
            counts_err2.__delslice__(0, k_i_cutbin)
            Q.__delslice__(0, k_i_cutbin)
            Q_err2.__delslice__(0, k_i_cutbin)
            E_t.__delslice__(0, k_i_cutbin)
            E_t_err2.__delslice__(0, k_i_cutbin)
            x_1.__delslice__(0, k_i_cutbin)
            x_2.__delslice__(0, k_i_cutbin)
            x_3.__delslice__(0, k_i_cutbin)
            x_4.__delslice__(0, k_i_cutbin)
            dT.__delslice__(0, k_i_cutbin)
            zero_vec.__delslice__(0, k_i_cutbin)

        try:
            if inst_name == "BSS":
                ((Q_1, E_t_1), (Q_2, E_t_2), (Q_3, E_t_3),
                 (Q_4, E_t_4)) = dr_lib.calc_BSS_EQ_verticies(
                     (E_t, E_t_err2), (Q, Q_err2), x_1, x_2, x_3, x_4, dT, dh,
                     zero_vec)
            else:
                raise RuntimeError("Do not know how to calculate (Q_i, "\
                                   +"E_t_i) verticies for instrument %s" \
                                   % inst_name)

        except IndexError:
            # All the data got Q filtered, move on
            continue

        try:
            (y_2d, y_2d_err2, area_new,
             bin_count_new) = axis_manip.rebin_2D_quad_to_rectlin(
                 Q_1, E_t_1, Q_2, E_t_2, Q_3, E_t_3, Q_4, E_t_4, counts,
                 counts_err2, so_dim.axis[0].val, so_dim.axis[1].val)
        except IndexError, e:
            # Get the offending index from the error message
            index = int(str(e).split()[1].split('index')[-1].strip('[]'))
            print "Id:", map_so.id
            print "Index:", index
            print "Verticies: %f, %f, %f, %f, %f, %f, %f, %f" % (
                Q_1[index], E_t_1[index], Q_2[index], E_t_2[index], Q_3[index],
                E_t_3[index], Q_4[index], E_t_4[index])
            raise IndexError(str(e))

        # Add in together with previous results
        (so_dim.y,
         so_dim.var_y) = array_manip.add_ncerr(so_dim.y, so_dim.var_y, y_2d,
                                               y_2d_err2)

        (area_sum,
         area_sum_err2) = array_manip.add_ncerr(area_sum, area_sum_err2,
                                                area_new, area_sum_err2)

        if configure.dump_pix_contrib or configure.scale_sqe:
            if inst_name == "BSS":
                dOmega = dr_lib.calc_BSS_solid_angle(map_so, inst)
                (bin_count_new, bin_count_err2) = array_manip.mult_ncerr(
                    bin_count_new, bin_count_err2, dOmega, 0.0)

                (bin_count, bin_count_err2) = array_manip.add_ncerr(
                    bin_count, bin_count_err2, bin_count_new, bin_count_err2)
        else:
            del bin_count_new
コード例 #6
0
def fix_bin_contents(obj, **kwargs):
    """
    This function takes a SOM or SO and goes through the individual spectra
    adjusting the bin contents by either multiplying or dividing by the
    bin widths or the bin centers taken from the individual spectra.

    @param obj: The data object to be scaled
    @type obj: C{SOM.SOM} or C{SOM.SO}

    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword scale: A flag that signals multiplication by the required bin
                    quantity. The default is I{False} (divide).
    @type scale: C{bool}

    @keyword width: A flag that signals that the adjusting quantity is the
                    bin width. The default is I{True}. If I{False}, the bin
                    center is used.
    @type width: C{bool}

    @keyword units: The expected units for this function. The default for this
                    function is I{microsecond}.
    @type units: C{string}


    @return: The object with the individual spectrum scaled
    @rtype: C{SOM.SOM} or C{SOM.SO}
    """
    import hlr_utils

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    # Setup keyword arguments
    try:
        scale = kwargs["scale"]
    except KeyError:
        scale = False

    try:
        width = kwargs["width"]
    except KeyError:
        width = True

    try:
        units = kwargs["units"]
    except KeyError:
        units = "microsecond"

    # Primary axis for transformation. If a SO is passed, the function, will
    # assume the axis for transformation is at the 0 position
    if o_descr == "SOM":
        axis_pos = hlr_utils.one_d_units(obj, units)
    else:
        axis_pos = 0

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    # iterate through the values
    import array_manip
    import utils

    for i in xrange(hlr_utils.get_length(obj)):
        val = hlr_utils.get_value(obj, i, o_descr, "y")
        err2 = hlr_utils.get_err2(obj, i, o_descr, "y")
        axis = hlr_utils.get_value(obj, i, o_descr, "x", axis_pos)
        axis_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis_pos)

        map_so = hlr_utils.get_map_so(obj, None, i)

        if width:
            (bin_const,
             bin_const_err2) = utils.calc_bin_widths(axis, axis_err2)
        else:
            (bin_const,
             bin_const_err2) = utils.calc_bin_centers(axis, axis_err2)

        if scale:
            value = array_manip.mult_ncerr(val, err2, bin_const,
                                           bin_const_err2)
        else:
            value = array_manip.div_ncerr(val, err2, bin_const, bin_const_err2)

        hlr_utils.result_insert(result, res_descr, value, map_so, "y")

    return result
コード例 #7
0
def create_E_vs_Q_dgs(som, E_i, Q_final, **kwargs):
    """
    This function starts with the rebinned energy transfer and turns this
    into a 2D spectra with E and Q axes for DGS instruments.

    @param som: The input object with initial IGS wavelength axis
    @type som: C{SOM.SOM}

    @param E_i: The initial energy for the given data.
    @type E_i: C{tuple}

    @param Q_final: The momentum transfer axis to rebin the data to
    @type Q_final: C{nessi_list.NessiList}

    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword corner_angles: The object that contains the corner geometry
                            information.
    @type corner_angles: C{dict}

    @keyword so_id: The identifier represents a number, string, tuple or other
                    object that describes the resulting C{SO}
    @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID}
    
    @keyword y_label: The y axis label
    @type y_label: C{string}
    
    @keyword y_units: The y axis units
    @type y_units: C{string}
    
    @keyword x_labels: This is a list of names that sets the individual x axis
    labels
    @type x_labels: C{list} of C{string}s
    
    @keyword x_units: This is a list of names that sets the individual x axis
    units
    @type x_units: C{list} of C{string}s

    @keyword split: This flag causes the counts and the fractional area to
                    be written out into separate files.
    @type split: C{boolean}

    @keyword configure: This is the object containing the driver configuration.
    @type configure: C{Configure}


    @return: Object containing a 2D C{SO} with E and Q axes
    @rtype: C{SOM.SOM}    
    """
    import array_manip
    import axis_manip
    import common_lib
    import hlr_utils
    import nessi_list
    import SOM
    import utils

    # Check for keywords
    corner_angles = kwargs["corner_angles"]
    configure = kwargs.get("configure")
    split = kwargs.get("split", False)

    # Setup output object
    so_dim = SOM.SO(2)

    so_dim.axis[0].val = Q_final
    so_dim.axis[1].val = som[0].axis[0].val  # E_t

    # Calculate total 2D array size
    N_tot = (len(so_dim.axis[0].val) - 1) * (len(so_dim.axis[1].val) - 1)

    # Create y and var_y lists from total 2D size
    so_dim.y = nessi_list.NessiList(N_tot)
    so_dim.var_y = nessi_list.NessiList(N_tot)

    # Create area sum and errors for the area sum lists from total 2D size
    area_sum = nessi_list.NessiList(N_tot)
    area_sum_err2 = nessi_list.NessiList(N_tot)

    # Convert initial energy to initial wavevector
    l_i = common_lib.energy_to_wavelength(E_i)
    k_i = common_lib.wavelength_to_scalar_k(l_i)

    # Since all the data is rebinned to the same energy transfer axis, we can
    # calculate the final energy axis once
    E_t = som[0].axis[0].val
    if som[0].axis[0].var is not None:
        E_t_err2 = som[0].axis[0].var
    else:
        E_t_err2 = nessi_list.NessiList(len(E_t))

    # Get the bin width arrays from E_t
    (E_t_bw, E_t_bw_err2) = utils.calc_bin_widths(E_t)

    E_f = array_manip.sub_ncerr(E_i[0], E_i[1], E_t, E_t_err2)

    # Now we can get the final wavevector
    l_f = axis_manip.energy_to_wavelength(E_f[0], E_f[1])
    k_f = axis_manip.wavelength_to_scalar_k(l_f[0], l_f[1])

    # Output position for Q
    X = 0

    # Iterate though the data
    len_som = hlr_utils.get_length(som)
    for i in xrange(len_som):
        map_so = hlr_utils.get_map_so(som, None, i)

        yval = hlr_utils.get_value(som, i, "SOM", "y")
        yerr2 = hlr_utils.get_err2(som, i, "SOM", "y")

        cangles = corner_angles[str(map_so.id)]

        avg_theta1 = (cangles.getPolar(0) + cangles.getPolar(1)) / 2.0
        avg_theta2 = (cangles.getPolar(2) + cangles.getPolar(3)) / 2.0

        Q1 = axis_manip.init_scatt_wavevector_to_scalar_Q(
            k_i[0], k_i[1], k_f[0][:-1], k_f[1][:-1], avg_theta2, 0.0)

        Q2 = axis_manip.init_scatt_wavevector_to_scalar_Q(
            k_i[0], k_i[1], k_f[0][:-1], k_f[1][:-1], avg_theta1, 0.0)

        Q3 = axis_manip.init_scatt_wavevector_to_scalar_Q(
            k_i[0], k_i[1], k_f[0][1:], k_f[1][1:], avg_theta1, 0.0)

        Q4 = axis_manip.init_scatt_wavevector_to_scalar_Q(
            k_i[0], k_i[1], k_f[0][1:], k_f[1][1:], avg_theta2, 0.0)

        # Calculate the area of the E,Q polygons
        (A, A_err2) = utils.calc_eq_jacobian_dgs(E_t[:-1], E_t[:-1], E_t[1:],
                                                 E_t[1:], Q1[X], Q2[X], Q3[X],
                                                 Q4[X])

        # Apply the Jacobian: C/dE_t * dE_t / A(EQ) = C/A(EQ)
        (jac_ratio,
         jac_ratio_err2) = array_manip.div_ncerr(E_t_bw, E_t_bw_err2, A,
                                                 A_err2)
        (counts, counts_err2) = array_manip.mult_ncerr(yval, yerr2, jac_ratio,
                                                       jac_ratio_err2)

        try:
            (y_2d, y_2d_err2, area_new,
             bin_count) = axis_manip.rebin_2D_quad_to_rectlin(
                 Q1[X], E_t[:-1], Q2[X], E_t[:-1], Q3[X], E_t[1:], Q4[X],
                 E_t[1:], counts, counts_err2, so_dim.axis[0].val,
                 so_dim.axis[1].val)

            del bin_count

        except IndexError, e:
            # Get the offending index from the error message
            index = int(str(e).split()[1].split('index')[-1].strip('[]'))
            print "Id:", map_so.id
            print "Index:", index
            print "Verticies: %f, %f, %f, %f, %f, %f, %f, %f" % (
                Q1[X][index], E_t[:-1][index], Q2[X][index], E_t[:-1][index],
                Q3[X][index], E_t[1:][index], Q4[X][index], E_t[1:][index])
            raise IndexError(str(e))

        # Add in together with previous results
        (so_dim.y,
         so_dim.var_y) = array_manip.add_ncerr(so_dim.y, so_dim.var_y, y_2d,
                                               y_2d_err2)

        (area_sum,
         area_sum_err2) = array_manip.add_ncerr(area_sum, area_sum_err2,
                                                area_new, area_sum_err2)
コード例 #8
0
def dimensionless_mon(obj, min_ext, max_ext, **kwargs):
    """
    This function takes monitor spectra and converts them to dimensionless
    spectra by dividing each spectrum by the total number of counts within the
    range [min_ext, max_ext]. Then, each spectrum is multiplied by the quantity
    max_ext - min_ext. The units of min_ext and max_ext are assumed to be the
    same as the monitor spectra axis.

    @param obj: Object containing monitor spectra
    @type obj: C{SOM.SOM} or C{SOM.SO}

    @param min_ext: Minimium range and associated error^2 for integrating total
                    counts.
    @type min_ext: C{tuple}

    @param max_ext: Maximium range and associated error^2 for integrating total
                    counts.
    @type max_ext: C{tuple}

    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword units: The expected units for this function. The default for this
                    function is I{Angstroms}.
    @type units: C{string}


    @return: Dimensionless monitor spectra
    @rtype: C{SOM.SOM} or C{SOM.SO}
    """

    # import the helper functions
    import hlr_utils

    if obj is None:
        return obj

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    # Setup keyword arguments
    try:
        units = kwargs["units"]
    except KeyError:
        units = "Angstroms"

    # Primary axis for transformation. If a SO is passed, the function, will
    # assume the axis for transformation is at the 0 position
    if o_descr == "SOM":
        axis = hlr_utils.one_d_units(obj, units)
    else:
        axis = 0

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    import array_manip
    import dr_lib
    import utils

    for i in xrange(hlr_utils.get_length(obj)):
        val = hlr_utils.get_value(obj, i, o_descr, "y")
        err2 = hlr_utils.get_err2(obj, i, o_descr, "y")
        x_axis = hlr_utils.get_value(obj, i, o_descr, "x", axis)
        x_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis)
        map_so = hlr_utils.get_map_so(obj, None, i)

        bin_widths = utils.calc_bin_widths(x_axis, x_err2)

        # Scale bin contents by bin width
        value0 = array_manip.mult_ncerr(val, err2, bin_widths[0],
                                        bin_widths[1])

        # Find bin range for extents
        min_index = utils.bisect_helper(x_axis, min_ext[0])
        max_index = utils.bisect_helper(x_axis, max_ext[0])

        # Integrate axis using bin width multiplication
        (asum, asum_err2) = dr_lib.integrate_axis_py(map_so,
                                                     start=min_index,
                                                     end=max_index,
                                                     width=True)

        # Get the number of bins in the integration range
        num_bins = max_index - min_index + 1

        asum /= num_bins
        asum_err2 /= (num_bins * num_bins)

        # Divide by sum
        value1 = array_manip.div_ncerr(value0[0], value0[1], asum, asum_err2)

        hlr_utils.result_insert(result, res_descr, value1, map_so, "y")

    return result
コード例 #9
0
def integrate_axis_py(obj, **kwargs):
    """
    This function takes a spectrum and integrates the given axis. The function
    assumes that the incoming data is in the histogram form.

    @param obj: Spectrum to be integrated
    @type obj: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword start: Index of the starting bin
    @type start: C{int}
    
    @keyword end: Index of the ending bin. This index is made inclusive by the
                  function.
    @type end: C{int}
    
    @keyword axis: This is the axis one wishes to manipulate. If no argument is
                   given the default value is I{y}.
    @type axis: C{string}=<y or x>
    
    @keyword axis_pos: This is position of the axis in the axis array. If no
    argument is given, the default value is I{0}.
    @type axis_pos: C{int}
    
    @keyword avg: This allows the function to calculate a geometrical average.
    The default value is I{False}.
    @type avg: C{boolean}

    @keyword width: This is a flag to turn on the multiplication of the
                    individual bin contents with the bins corresponding width.
    @type width: C{boolean}

    @keyword width_pos: This is position of the x-axis in the axis array from
                        which to calculate the bin widths in support of the
                        width flag. If no argument is given, the default value
                        is I{0}.
    @type width_pos: C{int}

    
    @return: The integration value and its associated error
    @rtype: C{tuple}

    
    @raise RuntimError: A C{SOM} or C{SO} is not given to the function.

    @raise RuntimeError: The width keyword is used with x-axis integration.
    """

    # import the helper functions
    import hlr_utils

    # set up for working through data
    o_descr = hlr_utils.get_descr(obj)

    if o_descr == "number" or o_descr == "list":
        raise RuntimeError("Must provide a SOM of a SO to the function.")
    # Go on
    else:
        pass

    # Check for starting bin
    try:
        start = kwargs["start"]
    except KeyError:
        start = 0

    # Check for ending bin
    try: 
        end = kwargs["end"]
        if end != -1:
            end += 1
        else:
            pass
    except KeyError:
        end = -1

    # Check for axis keyword argument
    try:
        axis = kwargs["axis"]
    except KeyError:
        axis = "y"
        
    # Check for axis_pos keyword argument
    try:
        axis_pos = kwargs["axis_pos"]
    except KeyError:
        axis_pos = 0

    # Check for avg keyword argument
    try:
        avg = kwargs["avg"]
    except KeyError:
        avg = False

    # Check for width keyword argument
    try:
        width = kwargs["width"]
    except KeyError:
        width = False        

    # Check for width_pos keyword argument
    try:
        width_pos = kwargs["width_pos"]
    except KeyError:
        width_pos = 0       
        
    integration = float(0)
    integration_error2 = float(0)

    import itertools
    if width:
        import utils

    bad_values = ["nan", "inf", "-inf"]

    for i in xrange(hlr_utils.get_length(obj)): 
        counter = 0  

        value = hlr_utils.get_value(obj, i, o_descr, axis, axis_pos)
        error = hlr_utils.get_err2(obj, i, o_descr, axis, axis_pos)

        if end == -1:
            value = value[start:]
            error = error[start:]
        else:
            value = value[start:end]
            error = error[start:end]
            
        if not width:
            for val, err2 in itertools.izip(value, error):
                if str(val) in bad_values or str(err2) in bad_values:
                    continue
                else:
                    integration += val
                    integration_error2 += err2
                    counter += 1
        else:
            if axis == "y":
                x_axis = hlr_utils.get_value(obj, i, o_descr, "x", width_pos)
                x_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", width_pos)
            elif axis == "x":
                raise RuntimeError("Cannot use width flag with x-axis "\
                                   +"integration")

            bin_widths = utils.calc_bin_widths(x_axis, x_err2)

            for val, err2, delta in itertools.izip(value, error,
                                                   bin_widths[0]):
                if str(val) in bad_values or str(err2) in bad_values:
                    continue
                else:
                    integration += (delta * val)
                    integration_error2 += (delta * delta * err2)
                    counter += 1
        
    if avg:
        return (integration / float(counter),
                integration_error2 / float(counter))
    else:
        return (integration, integration_error2)
コード例 #10
0
def fix_bin_contents(obj, **kwargs):
    """
    This function takes a SOM or SO and goes through the individual spectra
    adjusting the bin contents by either multiplying or dividing by the
    bin widths or the bin centers taken from the individual spectra.

    @param obj: The data object to be scaled
    @type obj: C{SOM.SOM} or C{SOM.SO}

    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword scale: A flag that signals multiplication by the required bin
                    quantity. The default is I{False} (divide).
    @type scale: C{bool}

    @keyword width: A flag that signals that the adjusting quantity is the
                    bin width. The default is I{True}. If I{False}, the bin
                    center is used.
    @type width: C{bool}

    @keyword units: The expected units for this function. The default for this
                    function is I{microsecond}.
    @type units: C{string}


    @return: The object with the individual spectrum scaled
    @rtype: C{SOM.SOM} or C{SOM.SO}
    """
    import hlr_utils

    # set up for working through data
    (result, res_descr) = hlr_utils.empty_result(obj)
    o_descr = hlr_utils.get_descr(obj)

    # Setup keyword arguments
    try:
        scale = kwargs["scale"]
    except KeyError:
        scale = False

    try:
        width = kwargs["width"]
    except KeyError:
        width = True
    
    try:
        units = kwargs["units"]
    except KeyError:
        units = "microsecond"

    # Primary axis for transformation. If a SO is passed, the function, will
    # assume the axis for transformation is at the 0 position
    if o_descr == "SOM":
        axis_pos = hlr_utils.one_d_units(obj, units)
    else:
        axis_pos = 0

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)
        
    # iterate through the values
    import array_manip
    import utils

    for i in xrange(hlr_utils.get_length(obj)):
        val = hlr_utils.get_value(obj, i, o_descr, "y")
        err2 = hlr_utils.get_err2(obj, i, o_descr, "y")
        axis = hlr_utils.get_value(obj, i, o_descr, "x", axis_pos)
        axis_err2 = hlr_utils.get_err2(obj, i, o_descr, "x", axis_pos)
        
        map_so = hlr_utils.get_map_so(obj, None, i)

        if width:
            (bin_const, bin_const_err2) = utils.calc_bin_widths(axis,
                                                                axis_err2)
        else:
            (bin_const, bin_const_err2) = utils.calc_bin_centers(axis,
                                                                 axis_err2)

        if scale:
            value = array_manip.mult_ncerr(val, err2, bin_const,
                                           bin_const_err2)
        else:
            value = array_manip.div_ncerr(val, err2, bin_const, bin_const_err2)

        hlr_utils.result_insert(result, res_descr, value, map_so, "y")

    return result
コード例 #11
0
def create_param_vs_Y(som, param, param_func, param_axis, **kwargs):
    """
    This function takes a group of single spectrum with any given axes
    (wavelength, energy etc.). The function can optionally rebin those axes to
    a given axis. It then creates a 2D spectrum by using a parameter,
    parameter functiona and a given axis for the lookup locations and places
    each original spectrum in the found location.
    
    @param som: The input object with arbitrary (but same) axis spectra
    @type som: C{SOM.SOM}

    @param param: The parameter that will be used for creating the lookups.
    @type param: C{string}

    @param param_func: The function that will convert the parameter into the
                       values for lookups.
    @type param_func: C{string}

    @param param_axis: The axis that will be searched for the lookup values.
    @type param_axis: C{nessi_list.NessiList}

    @param kwargs: A list of keyword arguments that the function accepts:

    @keyword rebin_axis: An axis to rebin the given spectra to.
    @type rebin_axis: C{nessi_list.NessiList}

    @keyword data_type: The name of the data type which can be either
                        I{histogram}, I{density} or I{coordinate}. The default
                        value will be I{histogram}.
    @type data_type: C{string}

    @keyword pixnorm: A flag to track the number of pixels that contribute to
                      a bin and then normalize the bin by that number.
    @type pixnorm: C{boolean}

    @keyword prnorm: A parameter to track and determine a range (max - min)
                     for each bin the requested parameter axis. The range will
                     then be divided into the final summed spectrum for the
                     given bin.
    @type prnorm: C{string}

    @keyword binnorm: A flag that turns on the scaling of each stripe of the
                      y-axis by the individual bins widths from the y-axis.
    @type binnorm: C{boolean}

    @keyword so_id: The identifier represents a number, string, tuple or other
                    object that describes the resulting C{SO}.
    @type so_id: C{int}, C{string}, C{tuple}, C{pixel ID}
    
    @keyword y_label: The dependent axis label
    @type y_label: C{string}
    
    @keyword y_units: The dependent axis units
    @type y_units: C{string}
    
    @keyword x_labels: The two independent axis labels
    @type x_labels: C{list} of C{string}s
    
    @keyword x_units: The two independent axis units
    @type x_units: C{list} of C{string}s


    @return: A two dimensional spectrum with the parameter as the x-axis and
             the given spectra axes as the y-axis.
    @rtype: C{SOM.SOM}
    """
    import array_manip
    import dr_lib
    import hlr_utils
    import nessi_list
    import SOM
    import utils

    # Check for rebinning axis
    try:
        rebin_axis = kwargs["rebin_axis"]
    except KeyError:
        rebin_axis = None

    # Check for pixnorm flag
    try:
        pixnorm = kwargs["pixnorm"]
    except KeyError:
        pixnorm = False

    try:
        binnorm = kwargs["binnorm"]
    except KeyError:
        binnorm = False

    # Check for prnorm flag
    try:
        prpar = kwargs["prnorm"]
        prnorm = True
    except KeyError:
        prnorm = False

    # Check dataType keyword argument. An offset will be set to 1 for the
    # histogram type and 0 for either density or coordinate
    try:
        data_type = kwargs["data_type"]
        if data_type.lower() == "histogram":
            offset = 1
        elif data_type.lower() == "density" or \
                 data_type.lower() == "coordinate":
            offset = 0
        else:
            raise RuntimeError("Do not understand data type given: %s" % \
                               data_type)
    # Default is offset for histogram
    except KeyError:
        offset = 1

    # Setup some variables
    dim = 2
    N_tot = 1

    # Create 2D spectrum object
    so_dim = SOM.SO(dim)

    # Set the axis locations
    param_axis_loc = 0
    arb_axis_loc = 1

    # Rebin original data to rebin_axis if necessary
    if rebin_axis is not None:
        (som1, som2) = dr_lib.rebin_axis_1D_frac(som, rebin_axis)
        len_arb_axis = len(rebin_axis) - offset
        so_dim.axis[arb_axis_loc].val = rebin_axis
    else:
        som1 = som
        len_arb_axis = len(som[0].axis[0].val) - offset
        so_dim.axis[arb_axis_loc].val = som[0].axis[0].val

    del som

    # Get parameter axis information
    len_param_axis = len(param_axis) - offset
    so_dim.axis[param_axis_loc].val = param_axis

    if pixnorm:
        pixarr = nessi_list.NessiList(len_param_axis)

    if prnorm:
        prarr = []
        for i in xrange(len_param_axis):
            prarr.append(nessi_list.NessiList())
        # Get the parameters for all the spectra
        ppfunc = hlr_utils.__getattribute__("param_array")
        prarr_lookup = ppfunc(som1, prpar)

    # Get the parameter lookup array
    pfunc = hlr_utils.__getattribute__(param_func)
    lookup_array = pfunc(som1, param)

    # Create y and var_y lists from total 2D size
    N_tot = len_param_axis * len_arb_axis
    so_dim.y = nessi_list.NessiList(N_tot)
    so_dim.var_y = nessi_list.NessiList(N_tot)
    if rebin_axis is not None:
        frac_area = nessi_list.NessiList(N_tot)
        frac_area_err2 = nessi_list.NessiList(N_tot)

    # Loop through data and create 2D spectrum
    len_som = hlr_utils.get_length(som1)
    for i in xrange(len_som):
        val = hlr_utils.get_value(som1, i, "SOM", "y")
        err2 = hlr_utils.get_err2(som1, i, "SOM", "y")

        bin_index = utils.bisect_helper(param_axis, lookup_array[i])
        start = bin_index * len_arb_axis

        if pixnorm:
            pixarr[bin_index] += 1

        if prnorm:
            prarr[bin_index].append(prarr_lookup[i])

        (so_dim.y, so_dim.var_y) = array_manip.add_ncerr(so_dim.y,
                                                         so_dim.var_y,
                                                         val,
                                                         err2,
                                                         a_start=start)
        if rebin_axis is not None:
            val1 = hlr_utils.get_value(som2, i, "SOM", "y")
            err1_2 = hlr_utils.get_err2(som2, i, "SOM", "y")
            (frac_area, frac_area_err2) = array_manip.add_ncerr(frac_area,
                                                                frac_area_err2,
                                                                val1,
                                                                err1_2,
                                                                a_start=start)

    if rebin_axis is not None:
        (so_dim.y,
         so_dim.var_y) = array_manip.div_ncerr(so_dim.y, so_dim.var_y,
                                               frac_area, frac_area_err2)

    # If parameter range normalization enabled, find the range for the
    # parameter
    if prnorm:
        import math
        prrange = nessi_list.NessiList(len_param_axis)
        for i in xrange(len(prrange)):
            try:
                max_val = max(prarr[i])
            except ValueError:
                max_val = 0.0
            try:
                min_val = min(prarr[i])
            except ValueError:
                min_val = 0.0
            prrange[i] = math.fabs(max_val - min_val)

    # If pixel normalization tracking enabled, divided slices by pixel counts
    if pixnorm or prnorm:
        tmp_y = nessi_list.NessiList(N_tot)
        tmp_var_y = nessi_list.NessiList(N_tot)

        for i in range(len_param_axis):
            start = i * len_arb_axis
            end = (i + 1) * len_arb_axis

            slice_y = so_dim.y[start:end]
            slice_var_y = so_dim.var_y[start:end]

            divconst = 1.0

            if pixnorm:
                divconst *= pixarr[i]
            # Scale division constant if parameter range normalization enabled
            if prnorm:
                divconst *= prrange[i]

            (dslice_y,
             dslice_var_y) = array_manip.div_ncerr(slice_y, slice_var_y,
                                                   divconst, 0.0)

            (tmp_y, tmp_var_y) = array_manip.add_ncerr(tmp_y,
                                                       tmp_var_y,
                                                       dslice_y,
                                                       dslice_var_y,
                                                       a_start=start)

        so_dim.y = tmp_y
        so_dim.var_y = tmp_var_y

    if binnorm:
        tmp_y = nessi_list.NessiList(N_tot)
        tmp_var_y = nessi_list.NessiList(N_tot)

        if rebin_axis is not None:
            bin_const = utils.calc_bin_widths(rebin_axis)
        else:
            bin_const = utils.calc_bin_widths(som1[0].axis[1].val)

        for i in range(len_param_axis):
            start = i * len_arb_axis
            end = (i + 1) * len_arb_axis

            slice_y = so_dim.y[start:end]
            slice_var_y = so_dim.var_y[start:end]

            (dslice_y,
             dslice_var_y) = array_manip.mult_ncerr(slice_y, slice_var_y,
                                                    bin_const[0], bin_const[1])

            (tmp_y, tmp_var_y) = array_manip.add_ncerr(tmp_y,
                                                       tmp_var_y,
                                                       dslice_y,
                                                       dslice_var_y,
                                                       a_start=start)

        so_dim.y = tmp_y
        so_dim.var_y = tmp_var_y

    # Create final 2D spectrum object container
    comb_som = SOM.SOM()
    comb_som.copyAttributes(som1)

    del som1

    # Check for so_id keyword argument
    try:
        so_dim.id = kwargs["so_id"]
    except KeyError:
        so_dim.id = 0

    # Check for y_label keyword argument
    try:
        comb_som.setYLabel(kwargs["y_label"])
    except KeyError:
        comb_som.setYLabel("Counts")

    # Check for y_units keyword argument
    try:
        comb_som.setYUnits(kwargs["y_units"])
    except KeyError:
        comb_som.setYUnits("Counts / Arb")

    # Check for x_label keyword argument
    try:
        comb_som.setAllAxisLabels(kwargs["x_labels"])
    except KeyError:
        comb_som.setAllAxisLabels(["Parameter", "Arbitrary"])

    # Check for x_units keyword argument
    try:
        comb_som.setAllAxisUnits(kwargs["x_units"])
    except KeyError:
        comb_som.setAllAxisUnits(["Arb", "Arb"])

    comb_som.append(so_dim)

    del so_dim

    return comb_som