コード例 #1
0
ファイル: views.py プロジェクト: NV1591/androidathon_backend
def get_workers():
    if request:
        app.logger.info('request headers - {0}'.format(request.headers))
    category = request.args.get('category')
    filtered_list = []
    final_list = []
    # query = db.session.query(TweetInfo).filter(TweetInfo.published == TWEET_PUBLISHED).order_by(db.desc(TweetInfo.id))
    query = db.session.query(Worker).all()
    if query:
        app.logger.info('query value true')
    for item in query:
        if item.category == category:
            filtered_list.append(item)

    latitude = request.args.get('latitude')
    unicodedata.normalize('NFKD', latitude).encode('ascii', 'ignore')
    longitude = request.args.get('longitude')
    unicodedata.normalize('NFKD', longitude).encode('ascii', 'ignore')
    distance = request.args.get('distance')

    if not distance:
        distance = 2.0
    for item in filtered_list:
        distance_point = calc_dist(float(item.latitude), float(item.longitude),
                                   float(latitude), float(longitude))
        app.logger.info('dist - {0}'.format(distance_point))
        distance_point = 1.5
        if distance_point < distance:
            awesome_dict = create_dictionary(item, distance_point)
            final_list.append(awesome_dict)

    return jsonify({'workers': final_list})
コード例 #2
0
def test3(params):
    name, ncity, D, coord = read(params.f)
    params.ncity = ncity
    model, _, _ = construct("PtrNet", params, is_train=False)
    _input = torch.Tensor([np.asarray([x for x in coord.values()])])
    ts = time()
    _, tour = model(_input)
    tour = list(tour.detach().numpy()[0])
    total_dist = calc_dist(tour, D)
    print("\nPtrNet", total_dist, "\ntime", time() - ts)
    print(*tour)

    model, _, _ = construct("NeuralCombOptRL", params, is_train=False)
    _input = torch.Tensor([np.asarray([x for x in coord.values()])])
    ts = time()
    _, _, _, tour = model(_input)
    tour = list(tour.detach().numpy()[0])
    total_dist = calc_dist(tour, D)
    print("\nNeuralCombOptRL", total_dist, "\ntime", time() - ts)
    print(*tour)
コード例 #3
0
def test1(filename):
    name, ncity, D, coord = read(filename)

    two_opt = TwoOpt(ncity, D)
    two_opt_multi = TwoOpt(ncity, D)
    simanneal = TSPSimAnneal(ncity, D)
    ga = TSPGA(ncity, D)
    IP = PulpIP(ncity, D, MTZ_level=2)

    ts = time()
    tour = two_opt.solve_two_opt(strategy="greedy_random")
    total_dist = calc_dist(tour, D)
    assert isclose(total_dist, two_opt.best_obj, abs_tol=1e-5)
    print("\nnormal", total_dist, "\ntime", time() - ts)

    ts = time()
    tour = two_opt_multi.solve_multi_start_two_opt(10,
                                                   strategy="greedy_random")
    total_dist = calc_dist(tour, D)
    assert isclose(total_dist, two_opt_multi.best_obj, abs_tol=1e-5)
    print("\nmulti start", total_dist, "\ntime", time() - ts)

    ts = time()
    tour = simanneal.solve_simulated_annealing(T=8215972750,
                                               C=0.81,
                                               strategy="greedy_random")
    total_dist = calc_dist(tour, D)
    assert isclose(total_dist, simanneal.best_obj, abs_tol=1e-5)
    print("\nsimulated annealing", total_dist, "\ntime", time() - ts)

    ts = time()
    tour = ga.solve(cxpb=0.3276646451925047, mutpb=0.6116923679473824)
    total_dist = calc_dist(tour, D)
    print("\nga simple", total_dist, "\ntime", time() - ts)

    ts = time()
    tour = IP.solve(solver_name="cplex")
    total_dist = calc_dist(tour, D)
    print("\nip", total_dist, "\ntime", time() - ts)
    print(*tour)
コード例 #4
0
 def find_neighbours(self, users):
     neighbours = []
     maximal_geo_dist = (180**2 + 360**2)**(1 / 2)
     for index, user in users.iterrows():
         neighbour_dist = maximal_geo_dist
         neighbour_name = 'No neighbours :( '
         for n_index, n_user in users.iterrows():
             dist = calc_dist(user, n_user)
             if (dist < neighbour_dist) and (n_user['id'] != user['id']):
                 neighbour_dist = dist
                 neighbour_name = n_user['name']
         neighbours.append((user['name'], neighbour_name))
     return neighbours
コード例 #5
0
def Query4ByLLR(lat, lon, rad):
    (y, x) = ut.mapping(lat, lon)
    cur.execute("set @poly='Polygon((%f %f,%f %f,%f %f,%f %f,%f %f))'" %
                (x - rad, y + rad, x + rad, y + rad, x + rad, y - rad, x - rad,
                 y - rad, x - rad, y + rad))
    cur.execute(
        'select nodeID,ST_AsText(position),name,poitype from POIs where MBRContains(ST_GeomFromText(@poly),planaxy)'
    )
    queryResult = cur.fetchall()
    ans = []
    for row in queryResult:
        coordinate = row[1].strip().split(' ')
        lons = float(coordinate[0][6:])
        lats = float(coordinate[1][:-1])
        d = ut.calc_dist(lat, lon, lats, lons)
        if d <= rad:
            ans.append((row[0], (lons, lats), row[2], row[3], d))
    return (sorted(ans, key=operator.itemgetter(4)))
コード例 #6
0
ファイル: app.py プロジェクト: KumarManas04/ReUnite
def checkImages():
    try:
        databaseName = request.args.get('databaseName')
        imageId = request.args.get('imageId')
        #selecting important information from the user request

        #Accuring the database images based on the request
        #img1
        #img2 or vector2
        face1 = get_face_image(img1)
        face2 = get_face_image(img2)
        #can be skipped by the inclusion of the vectors time saved - 1s
        vector1 = get_embeddings(face1)
        vector2 = get_embeddings(face2)
        #getting the distance (distance measure can be changed)
        distOfImages = calc_dist(vector1, vector2)
        #getting the match score of the image
        score = get_match_score(distOfImages)
        #passing this as a api response to the client
        return jsonify({"Score": score})
    except:
        return jsonify({'trace': traceback.format_exc()})
コード例 #7
0
def Query5ByLL(lat, lon):
    (y, x) = ut.mapping(lat, lon)
    rad = 10
    queryResult = []
    flag = 1
    ans = []
    while True:
        cur.execute("set @poly='Polygon((%f %f,%f %f,%f %f,%f %f,%f %f))'" %
                    (x - rad, y + rad, x + rad, y + rad, x + rad, y - rad,
                     x - rad, y - rad, x - rad, y + rad))
        cur.execute(
            'select nodeID,ST_AsText(position) from nonPOIs where MBRContains(ST_GeomFromText(@poly),planaxy)'
        )
        queryResult = cur.fetchall()
        ans = []
        for row in queryResult:
            coordinate = row[1].strip().split(' ')
            lons = float(coordinate[0][6:])
            lats = float(coordinate[1][:-1])
            d = ut.calc_dist(lat, lon, lats, lons)
            if d <= rad:
                ans.append((row[0], (lons, lats), d))
        ls = (sorted(ans, key=operator.itemgetter(2)))
        for each in ls:
            cur.execute(
                "select ways.wayid, ways.name, ways.isRoad, ways.otherinfo from waynode, ways where waynode.nodeid=%s and waynode.wayid=ways.wayid and ways.isroad <> '0'"
                % (each[0]))
            queryRes = cur.fetchall()
            if len(queryRes) > 0:
                ans = queryRes
                flag = 0
                break
        if flag == 0:
            break
        else:
            rad = rad * 2.7
    return ans
コード例 #8
0
#for each pixel in mask:
##if mask pixel is not zero:
###closestDist=maxval
###closest=-1 (indexed)
###for each mineral vector:
####compute distance from current pixel's color values to element vector
####if distance is less than closestDist, set closest and closestDist
###set ouput pixel to closestIndex
###set confidence output pixel to closestDist

for vector in calibratedVectors:
	bufImage = np.zeros((tHeight, tWidth), dtype = np.int32)
	vector["buf"] = bufImage
	vector["dbuf"] = bufImage
	for element in calibration:
		utils.calc_dist(targetMask, vector["dbuf"], element_scans[element], vector[element])

for vector in calibratedVectors:
	utils.compare_dist(targetMask, outputImage, mineral_dists, vector["index"], vector["dbuf"])

mapImage = Image.new("P", (tWidth, tHeight), 0)
mapImage.putpalette(constants.palette)

mineralPixelCounts = {}
for mineral in mineralNames:
	mineralPixelCounts[mineral] = 0

d = ImageDraw.ImageDraw(mapImage)
for x in range(0, tWidth):
		for y in range(0, tHeight):
			color = outputImage[y,x]
コード例 #9
0
 def test_calc_dist(self):
     test_users_neighbours = pd.read_json(
         'test_data/test_users_neighbours.json')
     self.assertEqual(
         utils.calc_dist(test_users_neighbours.iloc[0],
                         test_users_neighbours.iloc[1]), 5)
コード例 #10
0
def proc_pcqm4m_sp(smiles_list):
    w_bond = 100 
    wo_bond = 100 
    smiles2pos = {}
    fail_count = 0 
    fail_smiles = []

    for i, smiles in enumerate(smiles_list):
        if i % 1000 == 0:
            logging.info("Processing idx: {}, smiles: {}, fail count so far: {} ...".format(i, smiles, fail_count))

        # ob_mol: OpenBabel's molecule object 
        ob_mol = ob.OBMol() 
        conversion.ReadString(ob_mol, smiles) 
        ob_calc = OpenBabelCalculator(ob_mol, forcefield=args.forcefield, removehs=args.removehs) 
        curr_min_dist_w_bond = ob_calc.get_min_dist(with_bond=True)
        curr_min_dist_wo_bond = ob_calc.get_min_dist(with_bond=False)
        py_mol = ob_calc.get_pymol()
        pos = ob_calc.get_pos()
        pdb.set_trace()
        if curr_min_dist_w_bond is None or curr_min_dist_wo_bond is None:
            fail_count += 1
            fail_smiles.append(smiles) 
            smiles2pos[smiles] = pos 
            if i % 1000 == 0:
                logging.info("minimum interatomic distance with    bonds so far: {:.4f} ...".format(w_bond)) 
                logging.info("minimum interatomic distance without bonds so far: {:.4f} ...".format(wo_bond))
            continue

        if curr_min_dist_wo_bond < args.threshold: 
            logging.info("Invalid: Minimum interatomic distance without bonds: {:.4f}, Smiles: {} ...".format(curr_min_dist_wo_bond, smiles)) 
            retry = 0 
            curr_min_dist_wo_bond_ = curr_min_dist_wo_bond 
            while curr_min_dist_wo_bond_ < args.threshold and retry <= args.retry_times:
                py_mol_, pos_, curr_min_dist_w_bond_, curr_min_dist_wo_bond_ = optimize(smiles) 
                retry += 1 

            py_mol = py_mol_ 
            pos = pos_ 
            curr_min_dist_w_bond = curr_min_dist_w_bond_ 
            curr_min_dist_wo_bond = curr_min_dist_wo_bond_ 
            logging.info("  Valid: Minimum interatomic distance with    bonds: {:.4f}, Smiles: {} ...".format(curr_min_dist_wo_bond, smiles)) 

        min_dist = calc_dist(py_mol, pos, with_bond=False)
        try:
            assert min_dist == curr_min_dist_wo_bond 
        except:
            logging.info("Fail smiles: {} ...".format(smiles))
            fail_count += 1
            fail_smiles.append(smiles)

        smiles2pos[smiles] = pos 

        if curr_min_dist_w_bond < w_bond:
            w_bond = curr_min_dist_w_bond 
        if curr_min_dist_wo_bond < wo_bond:
            wo_bond = curr_min_dist_wo_bond 

        if i % 1000 == 0:
            logging.info("minimum interatomic distance with    bonds so far: {:.4f} ...".format(w_bond)) 
            logging.info("minimum interatomic distance without bonds so far: {:.4f} ...".format(wo_bond))

        if args.max_size >= 0 and i >= args.max_size:
            break 

    return smiles2pos
コード例 #11
0
def statis_qm9(filepath):

    supplier = Chem.SDMolSupplier(filepath, removeHs=False, sanitize=False)

    w_bond = 100
    wo_bond = 100 
    smiles2pos = {}
    for i, mol in enumerate(supplier):
        if i < args.start_idx: 
            continue
        try:
            smiles = Chem.MolToSmiles(mol)
        except:
            logging.info("Processing mol {}, parse smiles fail ...".format(i))
            smiles = None

        if i % 1000 == 0:
            logging.info("Processing mol {}, smiles: {} ...".format(i, smiles))
        
        # ob_mol: OpenBabel's molecule object 
        ob_mol = ob.OBMol() 
        conversion.ReadString(ob_mol, smiles) 
        ob_calc = OpenBabelCalculator(ob_mol, forcefield=args.forcefield, removehs=args.removehs) 
        py_mol = ob_calc.get_pymol()
        pos = ob_calc.get_pos()

        # sanitize
        if mol is None:
            logging.info("idx: {}, smiles: {} cannot be parsed ...".format(i, can_smiles))
            continue
        N = mol.GetNumAtoms()
        try:
            assert N == pos.size(0)
        except:
            pdb.set_trace()
            tmp = 1

        curr_min_dist_w_bond = ob_calc.get_min_dist(with_bond=True)
        curr_min_dist_wo_bond = ob_calc.get_min_dist(with_bond=False)

        if curr_min_dist_wo_bond < args.threshold:
            logging.info("Invalid: Minimum interatomic distance without bonds: {:.4f}, Smiles: {} ...".format(curr_min_dist_wo_bond, smiles))
            retry = 0
            curr_min_dist_wo_bond_ = curr_min_dist_wo_bond
            while curr_min_dist_wo_bond_ < args.threshold and retry <= args.retry_times:
                py_mol_, pos_, curr_min_dist_w_bond_, curr_min_dist_wo_bond_ = optimize(smiles)
                retry += 1

            py_mol = py_mol_
            pos = pos_
            curr_min_dist_w_bond = curr_min_dist_w_bond_ 
            curr_min_dist_wo_bond = curr_min_dist_wo_bond_
            logging.info("  Valid: Minimum interatomic distance without bonds: {:.4f}, Smiles: {} ...".format(curr_min_dist_wo_bond, smiles))
        
        min_dist = calc_dist(py_mol, pos, with_bond=False)
        try:
            assert min_dist == curr_min_dist_wo_bond
        except: 
            logging.info("Fail smiles: {} ...".format(smiles))

        smiles2pos[smiles] = pos

        if curr_min_dist_w_bond < w_bond: 
            w_bond = curr_min_dist_w_bond 
        if curr_min_dist_wo_bond < wo_bond:
            wo_bond = curr_min_dist_wo_bond

        if i % 1000 == 0:
            logging.info("minimum interatomic distance with    bonds so far: {:.4f} ...".format(w_bond)) 
            logging.info("minimum interatomic distance without bonds so far: {:.4f} ...".format(wo_bond))

        if args.max_size >= 0 and i >= args.max_size:
            break 
    
    out_filepath = "./qm9_pos.pt"
    torch.save(smiles2pos, out_filepath)
コード例 #12
0
from numpy import mean
import matplotlib.pyplot as plt

# cluster points
my_data = []
sy_data = []
for i in range(10):
    my_data.append(kmeans_cluster_assignment(3, whiten(hard_y)))
    sy_data.append(kmeans(whiten(hard_y), 3))

centroids_true = find_centroids(whiten(hard_y), y_true)

diff = []
for i in range(10):
    for true in centroids_true:
        my = calc_dist(centroids_true, sorted(my_data[i][1], key=mean))
        sy = calc_dist(centroids_true, sorted(sy_data[i][0], key=mean))
        diff.append(sy - my)

print(mean(diff))

fig = plt.figure(figsize=FIG_SIZE)
plt.xlabel('X_axis')
plt.ylabel('Y_axis')
plt.grid(True)
plt.title('Centroids - all points were whitened for consistency')

whitened = whiten(hard_y)
# Find 2 clusters in the data
codebook, distortion = kmeans(whitened, 3)
# Plot whitened data and cluster centers in red