コード例 #1
0
ファイル: train.py プロジェクト: aemilani/CoEA
def get_monotonic_indicator(net_params, layer_params_list, weights,
                            data, n_layers=4):
    input_layer = layers.Input(shape=(data.shape[1],))
    enc = layers.Dense(layer_params_list[-1]['n_neuron'],
                       activation=layer_params_list[-1]['act'],
                       kernel_initializer=layer_params_list[-1]['init'])(input_layer)
    for i in range(n_layers - 1):
        enc = layers.Dense(layer_params_list[-2 - i]['n_neuron'],
                           activation=layer_params_list[-2 - i]['act'],
                           kernel_initializer=layer_params_list[-2 - i]['init'])(enc)
    dec = layers.Dense(layer_params_list[1]['n_neuron'],
                       activation=layer_params_list[1]['act'],
                       kernel_initializer=layer_params_list[1]['init'])(enc)
    for i in range(n_layers - 2):
        dec = layers.Dense(layer_params_list[i + 2]['n_neuron'],
                           activation=layer_params_list[i + 2]['act'],
                           kernel_initializer=layer_params_list[i + 2]['init'])(dec)
    output_layer = layers.Dense(len(data.T),
                                activation=layer_params_list[-1]['act'],
                                kernel_initializer=layer_params_list[-1]['init'])(dec)
    model = models.Model(input_layer, output_layer)
    model.set_weights(weights)
    model = models.Model(input_layer, enc)
    indicators = model.predict(data)
    rho_mk = np.abs(calc_rho(indicators))
    return indicators[:, np.argmax(rho_mk)]
コード例 #2
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        self.update_params()
        mkey = 'Solvent'
        sol_density = tuple(np.ones_like(self.__Density__[mkey]))
        R = self.__R__[mkey]
        rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
            R=tuple(R),
            material=tuple(self.__material__[mkey]),
            relement=self.relement,
            density=tuple(self.__Density__[mkey]),
            sol_density=sol_density,
            Energy=self.Energy,
            Rmoles=tuple(self.__Rmoles__[mkey]),
            NrDep=self.NrDep)
        for mkey in self.__mkeys__:
            if mkey != 'Solvent':
                trho, teirho, tadensity, trhor, teirhor, tadensityr = calc_rho(
                    R=tuple(self.__R__[mkey]),
                    material=tuple(self.__material__[mkey]),
                    relement=self.relement,
                    density=tuple(self.__Density__[mkey]),
                    sol_density=sol_density,
                    Energy=self.Energy,
                    Rmoles=tuple(self.__Rmoles__[mkey]),
                    NrDep=self.NrDep)
                vf = np.array(self.__VolFrac__[mkey])
                rho = rho + vf * trho
                eirho = eirho + vf * teirho
                adensity = adensity + vf * tadensity

        major = np.sum(self.__R__[self.__mkeys__[0]])
        minor = np.sum(
            np.array(self.__R__[self.__mkeys__[0]]) *
            np.array(self.__RzRatio__[self.__mkeys__[0]]))
        self.output_params['scaler_parameters'][
            'Diameter (Angstroms)'] = 2 * major
        self.output_params['scaler_parameters'][
            'Height (Angstroms)'] = 2 * minor
        if self.dist == 'LogNormal':
            dstd = 2 * np.sqrt((np.exp(self.Rsig**2) - 1) *
                               np.exp(2 * np.log(major) + self.Rsig**2))
            hstd = 2 * np.sqrt((np.exp(self.Rsig**2) - 1) *
                               np.exp(2 * np.log(minor) + self.Rsig**2))
            self.output_params['scaler_parameters'][
                'Diameter_Std (Angstroms)'] = dstd
            self.output_params['scaler_parameters'][
                'Height_Std (Angstroms)'] = hstd
        else:
            self.output_params['scaler_parameters'][
                'Diameter_Std (Angstroms)'] = 2 * self.Rsig
            self.output_params['scaler_parameters'][
                'Height_Std (Angstroms)'] = 2 * self.Rsig * minor / major
        if type(self.x) == dict:
            sqf = {}
            key = 'SAXS-term'
            sqft = self.ellipsoid_dict(
                tuple(self.x[key]),
                tuple(self.__R__[self.__mkeys__[0]]),
                tuple(self.__RzRatio__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                dist=self.dist,
                Np=self.Np,
                Nalf=self.Nalf)
            if self.SF is None:
                struct = np.ones_like(
                    self.x[key]
                )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x[key], D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x[key],
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)
            for key in self.x.keys():
                if key == 'SAXS-term':
                    sqf[key] = self.norm * 6.022e20 * sqft[
                        key] * struct + self.sbkg  # in cm^-1
                if key == 'Cross-term':
                    sqf[key] = self.norm * 6.022e20 * sqft[
                        key] * struct + self.cbkg  # in cm^-1
                if key == 'Resonant-term':
                    sqf[key] = self.norm * 6.022e20 * sqft[
                        key] * struct + self.abkg  # in cm^-1
            key1 = 'Total'
            total = self.norm * 6.022e20 * sqft[key1] * struct + self.sbkg
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(
                    tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], rho)
                self.output_params['rho_r'] = {'x': xtmp, 'y': ytmp}
                xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], eirho)
                self.output_params['eirho_r'] = {'x': xtmp, 'y': ytmp}
                xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]],
                                          adensity)
                self.output_params['adensity_r'] = {'x': xtmp, 'y': ytmp}
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }
                # xtmp,ytmp=create_steps(x=self.__R__[][:-1],y=self.__Rmoles__[:-1])
                # self.output_params['Rmoles_radial']={'x':xtmp,'y':ytmp}
                # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__RzRatio__[:-1])
                # self.output_params['RzRatio_radial'] = {'x': xtmp, 'y': ytmp}
                # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__density__[:-1])
                # self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.ellipsoid(
                tuple(self.x),
                tuple(self.__R__[self.__mkeys__[0]]),
                tuple(self.__RzRatio__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                dist=self.dist,
                Np=self.Np,
                Nalf=self.Nalf)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            sqerr = np.sqrt(6.022e20 * self.norm * self.flux * tsqf * svol +
                            self.sbkg)
            sqwerr = (6.022e20 * self.norm * tsqf * svol * self.flux +
                      self.sbkg + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(
                tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], rho)
            self.output_params['rho_r'] = {'x': xtmp, 'y': ytmp}
            xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], eirho)
            self.output_params['eirho_r'] = {'x': xtmp, 'y': ytmp}
            xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], adensity)
            self.output_params['adensity_r'] = {'x': xtmp, 'y': ytmp}
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__Rmoles__[:-1])
            # self.output_params['Rmoles_radial'] = {'x':xtmp , 'y': ytmp}
            # sqf = self.output_params[self.term]['y']
            # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__RzRatio__[:-1])
            # self.output_params['RzRatio_radial'] = {'x': xtmp, 'y': ytmp}
            # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__density__[:-1])
            # self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        return sqf
コード例 #3
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        self.output_params = {'scaler_parameters': {}}
        self.update_params()
        mkey = 'Solvent'
        sol_density = tuple(np.ones_like(self.__Density__[mkey]))
        R = self.__R__[mkey]
        rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
            R=tuple(R),
            material=tuple(self.__material__[mkey]),
            relement=self.relement,
            density=tuple(self.__Density__[mkey]),
            sol_density=sol_density,
            Energy=self.Energy,
            Rmoles=tuple(self.__Rmoles__[mkey]),
            NrDep=self.NrDep)
        for mkey in self.__mkeys__:
            if mkey != 'Solvent':
                trho, teirho, tadensity, trhor, teirhor, tadensityr = calc_rho(
                    R=tuple(self.__R__[mkey]),
                    material=tuple(self.__material__[mkey]),
                    relement=self.relement,
                    density=tuple(self.__Density__[mkey]),
                    sol_density=sol_density,
                    Energy=self.Energy,
                    Rmoles=tuple(self.__Rmoles__[mkey]),
                    NrDep=self.NrDep)
                vf = np.array(self.__VolFrac__[mkey])
                rho = rho + vf * trho
                eirho = eirho + vf * teirho
                adensity = adensity + vf * tadensity

        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    tuple(self.__R__[self.__mkeys__[0]]),
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=key,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(
                tuple(self.x[key]),
                tuple(self.__R__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                key=key1,
                dist=self.dist,
                Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(
                    tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Simulated_total_wo_err'] = {
                    'x': self.x[key],
                    'y': total
                }
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1]
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1]
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1]
                }
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }

        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(
                tuple(self.x),
                tuple(self.__R__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                dist=self.dist,
                Np=self.Np)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            sqerr = np.sqrt(6.020e20 * self.flux * self.norm * tsqf * struct *
                            svol + self.sbkg)
            sqwerr = (6.022e20 * tsqf * svol * self.flux * self.norm * struct +
                      self.sbkg + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(
                tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['rho_r'] = {'x': rhor[:, 0], 'y': rhor[:, 1]}
            self.output_params['eirho_r'] = {
                'x': eirhor[:, 0],
                'y': eirhor[:, 1]
            }
            self.output_params['adensity_r'] = {
                'x': adensityr[:, 0],
                'y': adensityr[:, 1]
            }
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
        return sqf
コード例 #4
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        self.update_params()
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sq = []
                term = key.split('_')[0]
                Energy = float(key.split('_')[1].split(':')[1])
                rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
                    R=self.__R__,
                    material=self.__material__,
                    density=self.__density__,
                    sol_density=self.__solDensity__,
                    Energy=Energy,
                    Rmoles=self.__Rmoles__,
                    NrDep=self.NrDep)
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    tuple(self.__R__),
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=term,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                sqf[key] = sqf[key] * struct + self.bkg

            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__),
                                                    self.Rsig, self.dist,
                                                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1]
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1]
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1]
                }
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }
                for key in self.x.keys():
                    term = key.split('_')[0]
                    Energy = key.split('_')[1].split(':')[1]
                    sqerr = np.sqrt(self.flux * sqf[key] * svol)
                    sqwerr = sqf[key] * svol * self.flux + 2 * (
                        0.5 - np.random.rand(len(sqerr))) * sqerr
                    self.output_params[term + '_w_E_' + Energy] = {
                        'x': self.x[key],
                        'y': sqwerr,
                        'yerr': sqerr
                    }

        else:
            rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
                R=self.__R__,
                material=self.__material__,
                density=self.__density__,
                sol_density=self.__solDensity__,
                Energy=self.Energy,
                Rmoles=self.__Rmoles__,
                NrDep=self.NrDep)
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x),
                                                      tuple(self.__R__),
                                                      self.Rsig,
                                                      tuple(rho),
                                                      tuple(eirho),
                                                      tuple(adensity),
                                                      dist=self.dist,
                                                      Np=self.Np)

            self.output_params['Total'] = {
                'x': self.x,
                'y': self.norm * np.array(tsqf) * 6.022e20 * struct + self.bkg
            }
            self.output_params['SAXS-term'] = {
                'x': self.x,
                'y': self.norm * np.array(eisqf) * 6.022e20 * struct + self.bkg
            }
            self.output_params['Resonant-term'] = {
                'x': self.x,
                'y': self.norm * np.array(asqf) * 6.022e20 * struct + self.bkg
            }
            self.output_params['Cross-term'] = {
                'x': self.x,
                'y': self.norm * np.array(csqf) * 6.022e20 * struct + self.bkg
            }
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__),
                                                    self.Rsig, self.dist,
                                                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                sqerr = np.sqrt(6.020e20 * self.flux * self.norm * tsqf *
                                struct * svol + self.bkg)
                sqwerr = (
                    6.022e20 * tsqf * svol * self.flux * self.norm * struct +
                    self.bkg + 2 * (0.5 - np.random.rand(len(tsqf))) * sqerr)
                self.output_params['simulated_total_w_err'] = {
                    'x': self.x,
                    'y': sqwerr,
                    'yerr': sqerr
                }
                self.output_params['Structure_Factor'] = {
                    'x': self.x,
                    'y': struct
                }
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1]
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1]
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1]
                }
            sqf = self.output_params[self.term]['y']
        return sqf
コード例 #5
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        scale = 1e27 / 6.022e23
        self.update_params()
        tR = self.__R__[:-1]
        tnmaterial = self.__material__[:-1]
        tfmaterial = self.__material__[:-1]
        tndensity = self.__density__[:-1]
        tfdensity = self.__density__[:-1]
        tsoldensity = self.__sol_density__[:-1]
        tRmoles = self.__Rmoles__[:-1]
        Rp = (3 / (4 * np.pi * self.norm * 6.022e23))**(1.0 / 3.0) * 1e9
        Rc = np.sum(tR)
        near, far = self.solrho(Rp=Rp,
                                Rc=Rc,
                                strho=self.stDensity,
                                tst=self.stThickness,
                                lrho=self.dbDensity * self.stDensity,
                                lexp=self.dbLength * self.stThickness,
                                rhosol=self.ionDensity,
                                R=tuple(tR),
                                material=tuple(tnmaterial),
                                density=tuple(tndensity),
                                sol_density=tuple(tsoldensity),
                                relement=self.relement,
                                Rmoles=tuple(tRmoles))
        dbr = [self.stThickness]
        dbr = dbr + [(Rp - Rc - self.stThickness) / self.Ndb
                     for i in range(self.Ndb)]
        nden = [self.stDensity]
        fden = [0.0]
        nden = np.append(
            nden,
            self.dbDensity * self.stDensity *
            np.exp(-np.cumsum(dbr[1:]) / self.dbLength / self.stThickness) +
            near)
        fden = np.append(
            fden,
            far *
            (1 -
             np.exp(-np.cumsum(dbr[1:]) / self.dbLength / self.stThickness)))
        self.output_params['scaler_parameters']['Rp'] = Rp
        nmf = self.__cf__.parse(self.nearIon)
        nmw = self.__cf__.molecular_weight()
        fmf = self.__cf__.parse(self.farIon)
        fmw = self.__cf__.molecular_weight()
        for i in range(len(dbr)):
            tR.append(dbr[i])
            tsoldensity.append(self.__sol_density__[-1])

            tndensity.append(2 * nden[i] * nmw /
                             1000)  # converting int gms/cubic-cms
            tfdensity.append(2 * fden[i] * fmw /
                             1000)  # converting int gms/cubic-cms
            tnmaterial.append('%s:%s' % (self.nearIon, self.__material__[-1]))
            tfmaterial.append('%s:%s' % (self.farIon, self.__material__[-1]))
            if self.relement in self.nearIon:
                tRmoles.append(1.0)
            elif self.relement in self.farIon:
                tRmoles.append(1.0)
            else:
                tRmoles.append(1.0)
        rhon, eirhon, adensityn, rhorn, eirhorn, adensityrn = calc_rho(
            R=tuple(tR),
            material=tuple(tnmaterial),
            relement=self.relement,
            density=tuple(tndensity),
            sol_density=tuple(tsoldensity),
            Energy=self.Energy,
            Rmoles=tuple(tRmoles),
            NrDep=self.NrDep)
        rhof, eirhof, adensityf, rhorf, eirhorf, adensityrf = calc_rho(
            R=tuple(tR),
            material=tuple(tfmaterial),
            relement=self.relement,
            density=tuple(tfdensity),
            sol_density=tuple(tsoldensity),
            Energy=self.Energy,
            Rmoles=tuple(tRmoles),
            NrDep=self.NrDep)
        rho, eirho, adensity = (rhon + rhof) / 2, (eirhon + eirhof) / 2, (
            adensityn + adensityf) / 2
        rhor, eirhor, adensityr = rhorn, eirhorn, adensityrn
        rhor[:, 1] = (rhor[:, 1] + rhorf[:, 1]) / 2
        eirhor[:, 1] = (eirhor[:, 1] + eirhorf[:, 1]) / 2
        adensityr[:, 1] = (adensityr[:, 1] + adensityrf[:, 1]) / 2

        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    tuple(tR),
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=key,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(
                tuple(self.x[key]),
                tuple(tR),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                key=key1,
                dist=self.dist,
                Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__),
                                                    self.Rsig, self.dist,
                                                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Simulated_total_wo_err'] = {
                    'x': self.x[key],
                    'y': total
                }
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1] * scale,
                    'names': ['r (Angs)', 'Density (Molar)']
                }  # in Molar
                self.output_params['rhon_r'] = {
                    'x': rhorn[:, 0],
                    'y': rhorn[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['eirhon_r'] = {
                    'x': eirhorn[:, 0],
                    'y': eirhorn[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['adensityn_r'] = {
                    'x': adensityrn[:, 0],
                    'y': adensityrn[:, 1] * scale,
                    'names': ['r (Angs)', 'Density (Molar)']
                }  # in Molar
                self.output_params['rhof_r'] = {
                    'x': rhorf[:, 0],
                    'y': rhorf[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['eirhof_r'] = {
                    'x': eirhorf[:, 0],
                    'y': eirhorf[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['adensityf_r'] = {
                    'x': adensityrf[:, 0],
                    'y': adensityrf[:, 1] * scale,
                    'names': ['r (Angs)', 'Density (Molar)']
                }  # in Molar
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x),
                                                      tuple(tR),
                                                      self.Rsig,
                                                      tuple(rho),
                                                      tuple(eirho),
                                                      tuple(adensity),
                                                      dist=self.dist,
                                                      Np=self.Np)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__:  # Generate all the quantities below while not fitting
            dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__), self.Rsig,
                                                self.dist, self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            asqf = self.norm * np.array(
                asqf) * 6.022e20 + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 + self.cbkg  # in cm^-1
            svol = 0.2**2 * 1.5 * 1e-3  # scattering volume in cm^3
            sqerr = np.sqrt(self.flux * sqf * svol)
            sqwerr = (sqf * svol * self.flux + 2 *
                      (0.5 - np.random.rand(len(sqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__), self.Rsig,
                                                self.dist, self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['simulated_total_wo_err'] = {
                'x': self.x,
                'y': sqf * svol * self.flux
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['Resontant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['rho_r'] = {
                'x': rhor[:, 0],
                'y': rhor[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['eirho_r'] = {
                'x': eirhor[:, 0],
                'y': eirhor[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['adensity_r'] = {
                'x': adensityr[:, 0],
                'y': adensityr[:, 1] * scale,
                'names': ['r (Angs)', 'Density (Molar)']
            }  # in Molar
            self.output_params['rhon_r'] = {
                'x': rhorn[:, 0],
                'y': rhorn[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['eirhon_r'] = {
                'x': eirhorn[:, 0],
                'y': eirhorn[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['adensityn_r'] = {
                'x': adensityrn[:, 0],
                'y': adensityrn[:, 1] * scale,
                'names': ['r (Angs)', 'Density (Molar)']
            }  # in Molar
            self.output_params['rhof_r'] = {
                'x': rhorf[:, 0],
                'y': rhorf[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['eirhof_r'] = {
                'x': eirhorf[:, 0],
                'y': eirhorf[:, 1],
                'names': ['r(Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['adensityf_r'] = {
                'x': adensityrf[:, 0],
                'y': adensityrf[:, 1] * scale,
                'names': ['r (Angs)', 'Density (Molar)']
            }  # in Molar
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            sqf = self.output_params[self.term]['y']
        return sqf
コード例 #6
0
ファイル: train.py プロジェクト: aemilani/CoEA
def train_ae_coea(net_params, layer_params_list, data_train, data_eval, n_layers=4,
                  iters=4000, ind=None):
    """Trains the Autoencoder with the given parameters. Returns max Rho_MK and validation loss"""

    K.clear_session()

    # Required in order to have reproducible results from a specific random seed
    os.environ['PYTHONHASHSEED'] = '0'

    # Force tf to use a single thread (required for reproducibility)
    session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1,
                                            inter_op_parallelism_threads=1)
    sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(),
                                config=session_conf)
    tf.compat.v1.keras.backend.set_session(sess)

    # network parameters
    batch = 32
    optim = net_params['optim']
    learn_rate = net_params['learn_rate']
    decay = net_params['decay']
    mom = net_params['mom']
    rand_seed = net_params['rand_seed']

    np.random.seed(rand_seed)
    rn.seed(rand_seed)
    tf.compat.v1.set_random_seed(rand_seed)

    iter_per_epoch = int(np.ceil(len(data_train) / batch))
    epochs = int(np.ceil(iters / iter_per_epoch))

    if optim == 'adam':
        opt = optimizers.Adam(lr=learn_rate, beta_1=mom, decay=decay, clipvalue=0.3)
    elif optim == 'nadam':
        opt = optimizers.Nadam(lr=learn_rate, beta_1=mom, schedule_decay=decay, clipvalue=0.3)
    elif optim == 'rmsprop':
        opt = optimizers.RMSprop(lr=learn_rate, rho=mom, decay=decay, clipvalue=0.3)
    else:  # adadelta
        opt = optimizers.Adadelta(lr=learn_rate, rho=mom, decay=decay, clipvalue=0.3)

    # pretraining
    input_data = data_train
    weights = []
    ea = EarlyStopping(patience=int(epochs / 3))
    cb = [ea]
    for i, layer_params in enumerate(layer_params_list):
        layer_params = layer_params_list[n_layers - 1 - i]
        input_layer = layers.Input(shape=(input_data.shape[1],))
        hidden_layer = layers.Dense(layer_params['n_neuron'],
                                    activation=layer_params['act'],
                                    kernel_regularizer=regularizers.l2(layer_params['L2']),
                                    activity_regularizer=SparseActivityRegularizer
                                    (p=layer_params['SP'], sparsity_beta=layer_params['SR']),
                                    kernel_initializer=layer_params['init'])(input_layer)
        output_layer = layers.Dense(input_data.shape[1], activation=layer_params['act'],
                                    kernel_initializer=layer_params['init'])(hidden_layer)
        model = models.Model(input_layer, output_layer)
        model.compile(optimizer=opt, loss='mse')
        history = model.fit(x=input_data, y=input_data, batch_size=batch,
                            epochs=epochs,
                            callbacks=cb, validation_split=0.2,
                            verbose=False)
        for loss in history.history['loss']:
            if np.isnan(loss):
                K.clear_session()
                return 0.01, 100
        h_weights = model.get_weights()
        weights.insert(2 * i, h_weights[0])
        weights.insert(2 * i + 1, h_weights[1])
        weights.insert(len(weights) - 2 * i, h_weights[2])
        weights.insert(len(weights) - 2 * i, h_weights[3])
        model = models.Model(input_layer, hidden_layer)
        input_data = model.predict(input_data)

    # stacking the layers - fine tuning
    input_layer = layers.Input(shape=(data_train.shape[1],))
    enc = layers.Dense(layer_params_list[-1]['n_neuron'],
                       activation=layer_params_list[-1]['act'],
                       kernel_initializer=layer_params_list[-1]['init'])(input_layer)
    for i in range(n_layers - 1):
        enc = layers.Dense(layer_params_list[-2 - i]['n_neuron'],
                           activation=layer_params_list[-2 - i]['act'],
                           kernel_initializer=layer_params_list[-2 - i]['init'])(enc)
    dec = layers.Dense(layer_params_list[1]['n_neuron'],
                       activation=layer_params_list[1]['act'],
                       kernel_initializer=layer_params_list[1]['init'])(enc)
    for i in range(n_layers - 2):
        dec = layers.Dense(layer_params_list[i + 2]['n_neuron'],
                           activation=layer_params_list[i + 2]['act'],
                           kernel_initializer=layer_params_list[i + 2]['init'])(dec)
    output_layer = layers.Dense(len(data_train.T),
                                activation=layer_params_list[-1]['act'],
                                kernel_initializer=layer_params_list[-1]['init'])(dec)
    # assumption: output layer has the same parameters as the final hidden layer
    model = models.Model(input_layer, output_layer)
    model.compile(optimizer=opt, loss='mse')
    model.set_weights(weights)
    history = model.fit(x=data_train, y=data_train, batch_size=batch,
                        epochs=epochs,
                        callbacks=cb, validation_data=(data_eval, data_eval),
                        verbose=False)
    if ind:
        ind.final_weights = model.get_weights()
    for loss in history.history['loss']:
        if np.isnan(loss):
            K.clear_session()
            return 0.01, 100
    val_loss = history.history['val_loss'][-1]
    model = models.Model(input_layer, enc)
    indicators = model.predict(data_eval)

    # MK test
    rho_mk = calc_rho(indicators)

    max_rho_mk = 0.01 if np.isnan(max(abs(rho_mk))) else max(abs(rho_mk))
    loss = 100 if np.isnan(val_loss) else val_loss

    return max_rho_mk, loss
コード例 #7
0
ファイル: Sphere_Uniform.py プロジェクト: nayanbera/XModFit
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        scale = 1e27 / 6.022e23
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        self.output_params = {'scaler_parameters': {}}
        self.update_params()
        rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
            R=tuple(self.__R__),
            material=tuple(self.__material__),
            relement=self.relement,
            density=tuple(self.__density__),
            sol_density=tuple(self.__sol_density__),
            Energy=self.Energy,
            Rmoles=tuple(self.__Rmoles__),
            NrDep=self.NrDep)
        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    tuple(self.__R__),
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=key,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(
                tuple(self.x[key]),
                tuple(self.__R__),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                key=key1,
                dist=self.dist,
                Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__),
                                                    self.Rsig, self.dist,
                                                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Simulated_total_wo_err'] = {
                    'x': self.x[key],
                    'y': total
                }
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1] * scale,
                    'names': ['r (Angs)', 'Density (Molar)']
                }  # in Molar
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }
                xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                          y=self.__Rmoles__[:-1])
                self.output_params['Rmoles_radial'] = {'x': xtmp, 'y': ytmp}
                xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                          y=self.__density__[:-1])
                self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x),
                                                      tuple(self.__R__),
                                                      self.Rsig,
                                                      tuple(rho),
                                                      tuple(eirho),
                                                      tuple(adensity),
                                                      dist=self.dist,
                                                      Np=self.Np)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            sqerr = np.sqrt(6.020e20 * self.flux * self.norm * tsqf * struct *
                            svol + self.sbkg)
            sqwerr = (6.022e20 * tsqf * svol * self.flux * self.norm * struct +
                      self.sbkg + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__), self.Rsig,
                                                self.dist, self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['rho_r'] = {
                'x': rhor[:, 0],
                'y': rhor[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['eirho_r'] = {
                'x': eirhor[:, 0],
                'y': eirhor[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['adensity_r'] = {
                'x': adensityr[:, 0],
                'y': adensityr[:, 1] * scale,
                'names': ['r (Angs)', 'Density (Molar)']
            }  # in Molar
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                      y=self.__Rmoles__[:-1])
            self.output_params['Rmoles_radial'] = {'x': xtmp, 'y': ytmp}
            sqf = self.output_params[self.term]['y']
            xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                      y=self.__density__[:-1])
            self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        return sqf