def __getitem__(self, idx): #pdb.set_trace() n_his = self.args.n_his frame_offset = self.args.frame_offset idx_video, idx_frame = self.valid_idx[idx][0], self.valid_idx[idx][1] objs = [] attrs = [] hws = [] for i in range(idx_frame - n_his * frame_offset, idx_frame + frame_offset + 1, frame_offset): frame = self.metadata[idx_video]['frames'][i] #frame_filename = frame['frame_filename'] frame_filename = os.path.join( 'video_' + str(idx_video).zfill(5), str(frame['frame_index'] + 1) + '.png') #pdb.set_trace() objects = frame['objects'] n_objects = len(objects) sub_id = idx_video // 1000 full_img_dir = os.path.join( self.data_dir, 'image_' + str(sub_id * 1000).zfill(5) + '-' + str( (sub_id + 1) * 1000).zfill(5)) img = self.loader(os.path.join(full_img_dir, frame_filename)) img = np.array(img)[:, :, ::-1].copy() img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA).astype( np.float) / 255. ### prepare object inputs object_inputs = [] for j in range(n_objects): material = objects[j]['material'] shape = objects[j]['shape'] if i == idx_frame - n_his * frame_offset: attrs.append( encode_attr(material, shape, self.bbox_size, self.args.attr_dim)) mask_raw = decode(objects[j]['mask']) mask = cv2.resize(mask_raw, (self.W, self.H), interpolation=cv2.INTER_NEAREST) # cv2.imshow("mask", mask * 255) # cv2.waitKey(0) #bbox, pos, box_hw = convert_mask_to_bbox_hw(mask_raw, self.H, self.W, self.bbox_size, objects[j]['mask']) bbox, pos = convert_mask_to_bbox(mask_raw, self.H, self.W, self.bbox_size) pos_mean = torch.FloatTensor( np.array([self.H / 2., self.W / 2.])) pos_mean = pos_mean.unsqueeze(1).unsqueeze(1) pos_std = pos_mean pos = normalize(pos, pos_mean, pos_std) mask_crop = normalize(crop(mask, bbox, self.H, self.W), 0.5, 1).unsqueeze(0) img_crop = normalize(crop(img, bbox, self.H, self.W), 0.5, 0.5).permute(2, 0, 1) if self.args.box_only_flag: bbx_xyxy, ret, crop_box, crop_box_v2 = decode_mask_to_box( objects[j]['mask'], [self.bbox_size, self.bbox_size], self.H, self.W) ret_mean = torch.FloatTensor( np.array([1 / 2., 1 / 2., 1 / 2., 1 / 2.])) ret_mean = ret_mean.unsqueeze(1).unsqueeze(1) ret_std = ret_mean ret = normalize(ret, ret_mean, ret_std) pos = ret[:2] hw = ret[2:] elif self.args.add_hw_state_flag: bbx_xyxy, ret, crop_box, crop_box_v2 = decode_mask_to_box( objects[j]['mask'], [self.bbox_size, self.bbox_size], self.H, self.W) ret_mean = torch.FloatTensor( np.array([1 / 2., 1 / 2., 1 / 2., 1 / 2.])) ret_mean = ret_mean.unsqueeze(1).unsqueeze(1) ret_std = ret_mean ret = normalize(ret, ret_mean, ret_std) hw = ret[2:] elif self.args.add_xyhw_state_flag: bbx_xyxy, ret, crop_box, crop_box_v2 = decode_mask_to_box( objects[j]['mask'], [self.bbox_size, self.bbox_size], self.H, self.W) ret_mean = torch.FloatTensor( np.array([1 / 2., 1 / 2., 1 / 2., 1 / 2.])) ret_mean = ret_mean.unsqueeze(1).unsqueeze(1) ret_std = ret_mean ret = normalize(ret, ret_mean, ret_std) pos = ret[:2] hw = ret[2:] identifier = get_identifier(objects[j]) if self.args.box_only_flag: s = torch.cat([pos, hw], 0).unsqueeze(0), identifier elif self.args.add_hw_state_flag or self.args.add_xyhw_state_flag: s = torch.cat([mask_crop, pos, img_crop, hw], 0).unsqueeze(0), identifier elif self.args.rm_mask_state_flag: s = torch.cat([mask_crop * 0, pos, img_crop], 0).unsqueeze(0), identifier else: s = torch.cat([mask_crop, pos, img_crop], 0).unsqueeze(0), identifier object_inputs.append(s) objs.append(object_inputs) attr = torch.cat(attrs, 0).view(n_objects, self.args.attr_dim, self.bbox_size, self.bbox_size) feats = [] for x in range(n_objects): feats.append(objs[0][x][0]) for i in range(1, len(objs)): for x in range(n_objects): for y in range(n_objects): id_x = objs[0][x][1] id_y = objs[i][y][1] if check_same_identifier(id_x, id_y): feats[x] = torch.cat([feats[x], objs[i][y][0]], 1) try: feats = torch.cat(feats, 0) except: print(idx_video, idx_frame) # print("feats shape", feats.size()) ### prepare relation attributes n_relations = n_objects * n_objects Ra = torch.FloatTensor( np.ones((n_relations, self.args.relation_dim * (self.args.n_his + 2), self.bbox_size, self.bbox_size)) * -0.5) # change to relative position relation_dim = self.args.relation_dim state_dim = self.args.state_dim if self.args.box_only_flag: for i in range(n_objects): for j in range(n_objects): idx = i * n_objects + j Ra[idx, 1::relation_dim] = feats[i, 0::state_dim] - feats[ j, 0::state_dim] # x Ra[idx, 2::relation_dim] = feats[i, 1::state_dim] - feats[ j, 1::state_dim] # y else: for i in range(n_objects): for j in range(n_objects): idx = i * n_objects + j Ra[idx, 1::relation_dim] = feats[i, 1::state_dim] - feats[ j, 1::state_dim] # x Ra[idx, 2::relation_dim] = feats[i, 2::state_dim] - feats[ j, 2::state_dim] # y # add collision attr gt = self.metadata[idx_video]['ground_truth'] gt_ids = gt['objects'] gt_collisions = gt['collisions'] label_rel = torch.FloatTensor( np.ones((n_objects * n_objects, 1)) * -0.5) if self.args.edge_superv: for i in range(idx_frame - n_his * frame_offset, idx_frame + frame_offset + 1, frame_offset): for j in range(len(gt_collisions)): frame_id = gt_collisions[j]['frame'] if 0 <= frame_id - i < self.args.frame_offset: id_0 = gt_collisions[j]['object'][0] id_1 = gt_collisions[j]['object'][1] for k in range(len(gt_ids)): if id_0 == gt_ids[k]['id']: id_x = get_identifier(gt_ids[k]) if id_1 == gt_ids[k]['id']: id_y = get_identifier(gt_ids[k]) # id_0 = get_identifier(gt_ids[gt_collisions[j]['object'][0]]) # id_1 = get_identifier(gt_ids[gt_collisions[j]['object'][1]]) for k in range(n_objects): if check_same_identifier(objs[0][k][1], id_x): x = k if check_same_identifier(objs[0][k][1], id_y): y = k idx_rel_xy = x * n_objects + y idx_rel_yx = y * n_objects + x # print(x, y, n_objects) idx = i - (idx_frame - n_his * frame_offset) idx /= frame_offset Ra[idx_rel_xy, int(idx) * relation_dim] = 0.5 Ra[idx_rel_yx, int(idx) * relation_dim] = 0.5 if i == idx_frame + frame_offset: label_rel[idx_rel_xy] = 1 label_rel[idx_rel_yx] = 1 ''' print(feats[0, -state_dim]) print(feats[0, -state_dim+1]) print(feats[0, -state_dim+2]) print(feats[0, -state_dim+3]) print(feats[0, -state_dim+4]) ''' ''' ### change absolute pos to relative pos feats[:, state_dim+1::state_dim] = \ feats[:, state_dim+1::state_dim] - feats[:, 1:-state_dim:state_dim] # x feats[:, state_dim+2::state_dim] = \ feats[:, state_dim+2::state_dim] - feats[:, 2:-state_dim:state_dim] # y feats[:, 1] = 0 feats[:, 2] = 0 ''' x = feats[:, :-state_dim] label_obj = feats[:, -state_dim:] if self.args.box_only_flag: label_obj[:, 1] -= feats[:, -2 * state_dim + 1] label_obj[:, 2] -= feats[:, -2 * state_dim + 2] label_obj[:, 0] -= feats[:, -2 * state_dim + 0] label_obj[:, 3] -= feats[:, -2 * state_dim + 3] else: label_obj[:, 1] -= feats[:, -2 * state_dim + 1] label_obj[:, 2] -= feats[:, -2 * state_dim + 2] rel = prepare_relations(n_objects) rel.append(Ra[:, :-relation_dim]) ''' print(rel[-1][0, 0]) print(rel[-1][0, 1]) print(rel[-1][0, 2]) print(rel[-1][2, 3]) print(rel[-1][2, 4]) print(rel[-1][2, 5]) ''' # print("attr shape", attr.size()) # print("x shape", x.size()) # print("label_obj shape", label_obj.size()) # print("label_rel shape", label_rel.size()) ''' for i in range(n_objects): print(objs[0][i][1]) print(label_obj[i, 1]) time.sleep(10) ''' return attr, x, rel, label_obj, label_rel
data = json.load(f) gt = data['ground_truth'] gt_ids = gt['objects'] gt_collisions = gt['collisions'] ids_cnter = [] for i in range(len(data['frames'])): objects = data['frames'][i]['objects'] ids = get_identifiers(objects) for x in range(len(ids)): found = False for y in range(len(ids_cnter)): if check_same_identifier(ids_cnter[y][0], ids[x]): ids_cnter[y][1] += 1 found = True if not found: ids_cnter.append([ids[x], 1]) ids_filter = [] for i in range(len(ids_cnter)): if ids_cnter[i][1] >= args.filter_cnter: ids_filter.append(ids_cnter[i][0]) frames_gt = [] for i in range(0, len(data['frames']), frame_offset): objects = data['frames'][i]['objects'] frame_filename = data['frames'][i]['frame_filename']
def forward_step(frames, model, objs_gt=None): n_frames = len(frames) if n_frames < args.n_his + 1: return [], [], [] ##### filter frames to predict # st_time = time.time() ids_predict = [] objs_first = frames[0][0] for i in range(len(objs_first)): id = objs_first[i][2] id_to_predict = True for j in range(1, n_frames): objs = frames[j][0] contain_id = False for k in range(len(objs)): if check_same_identifier(objs[k][2], id): contain_id = True break if not contain_id: id_to_predict = False break if id_to_predict: ids_predict.append(id) n_objects = len(ids_predict) if n_objects == 0: return [], [], [] # print("Time - filter frame", time.time() - st_time) ##### prepare inputs # st_time = time.time() feats_rec = [] attrs = [] for i in range(n_frames): objs = frames[i][0] feat_cur_frame = [] for j in range(len(ids_predict)): for k in range(len(objs)): attr, feat, id = objs[k] if check_same_identifier(ids_predict[j], id): feat_cur_frame.append(feat.clone()) if i == 0: attrs.append(attr.unsqueeze(0).clone()) break feats_rec.append(torch.cat(feat_cur_frame, 0)) attrs = torch.cat(attrs, 0) feats = torch.cat(feats_rec.copy(), 1) n_relations = n_objects * n_objects Ra = torch.FloatTensor( np.ones((n_relations, args.relation_dim * (args.n_his + 1), args.bbox_size, args.bbox_size)) * -0.5) relation_dim = args.relation_dim state_dim = args.state_dim for i in range(n_objects): for j in range(n_objects): idx = i * n_objects + j Ra[idx, 1::relation_dim] = feats[i, 1::state_dim] - feats[ j, 1::state_dim] # x Ra[idx, 2::relation_dim] = feats[i, 2::state_dim] - feats[ j, 2::state_dim] # y if args.edge_superv: for i in range(n_frames): rels = frames[i][1] for j in range(len(rels)): id_0, id_1 = rels[j][0], rels[j][1] x, y = -1, -1 for k in range(n_objects): if check_same_identifier(id_0, ids_predict[k]): x = k if check_same_identifier(id_1, ids_predict[k]): y = k # if x == -1 or y == -1: # continue idx_rel_xy = x * n_objects + y idx_rel_yx = y * n_objects + x Ra[idx_rel_xy, i * relation_dim] = 0.5 Ra[idx_rel_yx, i * relation_dim] = 0.5 ''' # change absolute pos to relative pos feats[:, state_dim+1::state_dim] = \ feats[:, state_dim+1::state_dim] - feats[:, 1:-state_dim:state_dim] # x feats[:, state_dim+2::state_dim] = \ feats[:, state_dim+2::state_dim] - feats[:, 2:-state_dim:state_dim] # y feats[:, 1] = 0 feats[:, 2] = 0 ''' rel = prepare_relations(n_objects) rel.append(Ra) # print("Time - prepare inputs", time.time() - st_time) ##### predict # st_time = time.time() node_r_idx, node_s_idx, Ra = rel[3], rel[4], rel[5] Rr_idx, Rs_idx, value = rel[0], rel[1], rel[2] Rr = torch.sparse.FloatTensor( Rr_idx, value, torch.Size([node_r_idx.shape[0], value.size(0)])) Rs = torch.sparse.FloatTensor( Rs_idx, value, torch.Size([node_s_idx.shape[0], value.size(0)])) data = [attrs, feats, Rr, Rs, Ra] with torch.set_grad_enabled(False): for d in range(len(data)): if use_gpu: data[d] = Variable(data[d].cuda()) else: data[d] = Variable(data[d]) attr, feats, Rr, Rs, Ra = data # print('attr size', attr.size()) # print('feats size', feats.size()) # print('Rr size', Rr.size()) # print('Rs size', Rs.size()) # print('Ra size', Ra.size()) # st_time = time.time() pred_obj, pred_rel, pred_feat = model(attr, feats, Rr, Rs, Ra, node_r_idx, node_s_idx, args.pstep, ret_feat=True) # print(time.time() - st_time) # print("Time - predict", time.time() - st_time) #### transform format # st_time = time.time() objs_pred = [] rels_pred = [] feats_pred = [] pred_obj = pred_obj.data.cpu() pred_rel = pred_rel.data.cpu() pred_feat = pred_feat.data.cpu() assert pred_obj.shape[0] == pred_feat.shape[0] assert pred_feat.shape[1] == args.nf_effect ''' mask = pred_obj[:, 0] position = pred_obj[:, 1:3] image = pred_obj[:, 3:] collision = pred_rel print('mask\n', mask) print('x\n', position[0]) print('y\n', position[1]) print('img\n', image[0]) time.sleep(10) ''' # print('pred_obj shape', pred_obj.shape) # print('pred_rel shape', pred_rel.shape) if objs_gt is not None: for i in range(n_objects): # cnt_id_in_gt = 0 # id_gt = -1 for j in range(len(objs_gt)): if check_same_identifier(ids_predict[i], objs_gt[j][2]): objs_pred.append(objs_gt[j]) feats_pred.append(pred_feat[i]) break # id_gt = j # cnt_id_in_gt += 1 ''' if cnt_id_in_gt == 0 or cnt_id_in_gt > 1: feat = pred_obj[i:i+1] feat[0, 1] += feats_rec[-1][i, 1] # x feat[0, 2] += feats_rec[-1][i, 2] # y feat[0, 0, feat[0, 0] >= 0] = 0.5 # mask feat[0, 0, feat[0, 0] < 0] = -0.5 obj = [attrs[i], feat, ids_predict[i]] objs_pred.append(obj) else: objs_pred.append(objs_gt[id_gt]) ''' else: for i in range(n_objects): feat = pred_obj[i:i + 1] # print(ids_predict[i]) # print(feat[0, 1]) # print(feats_rec[-1][i, 1]) feat[0, 1] += feats_rec[-1][i, 1] # x # print(feat[0, 1]) # time.sleep(1) feat[0, 2] += feats_rec[-1][i, 2] # y feat[0, 0, feat[0, 0] >= 0] = 0.5 # mask feat[0, 0, feat[0, 0] < 0] = -0.5 obj = [attrs[i], feat, ids_predict[i]] objs_pred.append(obj) feats_pred.append(pred_feat[i]) ''' print(objs_pred[0][1][0, 0]) print(objs_pred[0][1][0, 1]) print(objs_pred[0][1][0, 2]) print(objs_pred[0][1][0, 3]) print(objs_pred[0][1][0, 4]) ''' for i in range(n_relations): x = i // n_objects y = i % n_objects if x >= y: continue idx_0, idx_1 = i, y * n_objects + x if pred_rel[idx_0] + pred_rel[idx_1] > 0 and args.edge_superv: rels_pred.append([ids_predict[x], ids_predict[y]]) # print("Time - transform format", time.time() - st_time) return objs_pred, rels_pred, feats_pred
def forward_step(frames, model, objs_gt=None, args=None): n_frames = len(frames) if n_frames < args.n_his + 1: return [], [], [] ##### filter frames to predict # st_time = time.time() ids_predict = [] objs_first = frames[0][0] for i in range(len(objs_first)): id = objs_first[i][2] id_to_predict = True for j in range(1, n_frames): objs = frames[j][0] contain_id = False for k in range(len(objs)): if objs[k][2] == id: contain_id = True break if not contain_id: id_to_predict = False break if id_to_predict: ids_predict.append(id) n_objects = len(ids_predict) if n_objects == 0: return [], [], [] # print("Time - filter frame", time.time() - st_time) ##### prepare inputs # st_time = time.time() feats_rec = [] attrs = [] for i in range(n_frames): objs = frames[i][0] feat_cur_frame = [] for j in range(len(ids_predict)): for k in range(len(objs)): attr, feat, id = objs[k] if ids_predict[j] == id: feat_cur_frame.append(feat.clone()) if i == 0: attrs.append(attr.unsqueeze(0).clone()) break feats_rec.append(torch.cat(feat_cur_frame, 0)) attrs = torch.cat(attrs, 0) feats = torch.cat(feats_rec.copy(), 1) n_relations = n_objects * n_objects #pdb.set_trace() if args.separate_mode == 1: # update spatial features relation_dim_spatial = args.relation_dim_spatial state_dim_spatial = args.state_dim_spatial x_step = args.n_his + 1 feats_view = feats.view(n_objects, x_step, args.state_dim, args.bbox_size, args.bbox_size) feats_spatial = feats_view[:, :, :state_dim_spatial].contiguous().view( n_objects, x_step * state_dim_spatial, args.bbox_size, args.bbox_size) feats_spatial = (feats_spatial - 0.5) / 0.5 #if objs_gt is None: # pdb.set_trace() Ra_spatial = torch.FloatTensor( np.ones((n_relations, args.relation_dim_spatial * (args.n_his + 1), args.bbox_size, args.bbox_size)) * -0.5) for i in range(n_objects): for j in range(n_objects): idx = i * n_objects + j Ra_spatial[idx, 1::relation_dim_spatial] = feats_spatial[ i, 0::state_dim_spatial] - feats_spatial[ j, 0::state_dim_spatial] # x Ra_spatial[idx, 2::relation_dim_spatial] = feats_spatial[ i, 1::state_dim_spatial] - feats_spatial[ j, 1::state_dim_spatial] # y rel = prepare_relations(n_objects) rel.append(Ra_spatial) # st_time = time.time() node_r_idx, node_s_idx, Ra_spatial = rel[3], rel[4], rel[5] Rr_idx, Rs_idx, value = rel[0], rel[1], rel[2] Rr = torch.sparse.FloatTensor( Rr_idx, value, torch.Size([node_r_idx.shape[0], value.size(0)])) Rs = torch.sparse.FloatTensor( Rs_idx, value, torch.Size([node_s_idx.shape[0], value.size(0)])) data = [attrs, feats_spatial, Rr, Rs, Ra_spatial] with torch.set_grad_enabled(False): for d in range(len(data)): if use_gpu: data[d] = Variable(data[d].cuda()) else: data[d] = Variable(data[d]) attr, feats_spatial, Rr, Rs, Ra_spatial = data pred_obj_spa, pred_rel_spa, pred_feat_spa = model._spatial_model( attr, feats_spatial, Rr, Rs, Ra_spatial, node_r_idx, node_s_idx, args.pstep, ret_feat=True) feat_spa_list = [] for i in range(n_objects): feat_spa = pred_obj_spa[i] feat_spa[0] += feats_spatial[i, state_dim_spatial * args.n_his + 0] # x feat_spa[1] += feats_spatial[i, state_dim_spatial * args.n_his + 1] # y feat_spa[2] += feats_spatial[i, state_dim_spatial * args.n_his + 2] # h feat_spa[3] += feats_spatial[i, state_dim_spatial * args.n_his + 3] # w feat_spa = 0.5 * feat_spa + 0.5 feat_spa_list.append(feat_spa) Ra = torch.FloatTensor( np.ones((n_relations, args.relation_dim * (args.n_his + 1), args.bbox_size, args.bbox_size)) * -0.5) relation_dim = args.relation_dim state_dim = args.state_dim for i in range(n_objects): for j in range(n_objects): idx = i * n_objects + j if args.box_only_flag or args.new_mode == 1: Ra[idx, 1::relation_dim] = feats[i, 0::state_dim] - feats[ j, 0::state_dim] # x Ra[idx, 2::relation_dim] = feats[i, 1::state_dim] - feats[ j, 1::state_dim] # y else: Ra[idx, 1::relation_dim] = feats[i, 0::state_dim] - feats[ j, 0::state_dim] # x Ra[idx, 2::relation_dim] = feats[i, 1::state_dim] - feats[ j, 1::state_dim] # y Ra[idx, 3::relation_dim] = feats[i, 2::state_dim] - feats[ j, 2::state_dim] # h Ra[idx, 4::relation_dim] = feats[i, 3::state_dim] - feats[ j, 3::state_dim] # w if args.edge_superv: for i in range(n_frames): rels = frames[i][1] for j in range(len(rels)): id_0, id_1 = rels[j][0], rels[j][1] x, y = -1, -1 for k in range(n_objects): if check_same_identifier(id_0, ids_predict[k]): x = k if check_same_identifier(id_1, ids_predict[k]): y = k idx_rel_xy = x * n_objects + y idx_rel_yx = y * n_objects + x Ra[idx_rel_xy, i * relation_dim] = 0.5 Ra[idx_rel_yx, i * relation_dim] = 0.5 rel = prepare_relations(n_objects) rel.append(Ra) # st_time = time.time() node_r_idx, node_s_idx, Ra = rel[3], rel[4], rel[5] Rr_idx, Rs_idx, value = rel[0], rel[1], rel[2] Rr = torch.sparse.FloatTensor( Rr_idx, value, torch.Size([node_r_idx.shape[0], value.size(0)])) Rs = torch.sparse.FloatTensor( Rs_idx, value, torch.Size([node_s_idx.shape[0], value.size(0)])) data = [attrs, feats, Rr, Rs, Ra] with torch.set_grad_enabled(False): for d in range(len(data)): if use_gpu: data[d] = Variable(data[d].cuda()) else: data[d] = Variable(data[d]) attr, feats, Rr, Rs, Ra = data # st_time = time.time() pred_obj, pred_rel, pred_feat = model(attr, feats, Rr, Rs, Ra, node_r_idx, node_s_idx, args.pstep, ret_feat=True) # print(time.time() - st_time) #### transform format # st_time = time.time() #pdb.set_trace() objs_pred = [] rels_pred = [] feats_pred = [] pred_obj = pred_obj.data.cpu() pred_rel = pred_rel.data.cpu() pred_feat = pred_feat.data.cpu() assert pred_obj.shape[0] == pred_feat.shape[0] assert pred_feat.shape[1] == args.nf_effect ''' mask = pred_obj[:, 0] position = pred_obj[:, 1:3] image = pred_obj[:, 3:] collision = pred_rel print('mask\n', mask) print('x\n', position[0]) print('y\n', position[1]) print('img\n', image[0]) time.sleep(10) ''' if objs_gt is not None: for i in range(n_objects): # cnt_id_in_gt = 0 # id_gt = -1 for j in range(len(objs_gt)): if ids_predict[i] == objs_gt[j][2]: objs_pred.append(objs_gt[j]) feats_pred.append(pred_feat[i]) break # id_gt = j # cnt_id_in_gt += 1 ''' if cnt_id_in_gt == 0 or cnt_id_in_gt > 1: feat = pred_obj[i:i+1] feat[0, 1] += feats_rec[-1][i, 1] # x feat[0, 2] += feats_rec[-1][i, 2] # y feat[0, 0, feat[0, 0] >= 0] = 0.5 # mask feat[0, 0, feat[0, 0] < 0] = -0.5 obj = [attrs[i], feat, ids_predict[i]] objs_pred.append(obj) else: objs_pred.append(objs_gt[id_gt]) ''' else: for i in range(n_objects): feat = pred_obj[i:i + 1] feat[0, 0] += feats_rec[-1][i, 0] # x feat[0, 1] += feats_rec[-1][i, 1] # y feat[0, 2] += feats_rec[-1][i, 2] # h feat[0, 3] += feats_rec[-1][i, 3] # w if args.separate_mode == 1: feat[:, :4] = feat_spa_list[i] # masking out object if not args.box_only_flag and args.maskout_pixel_inference_flag: feat = utilsTube.maskout_pixels_outside_box( feat, args.H, args.W, args.bbox_size) obj = [attrs[i], feat, ids_predict[i]] objs_pred.append(obj) feats_pred.append(pred_feat[i]) for i in range(n_relations): x = i // n_objects y = i % n_objects if x >= y: continue idx_0, idx_1 = i, y * n_objects + x if pred_rel[idx_0] + pred_rel[idx_1] > 0 and args.edge_superv: rels_pred.append([ids_predict[x], ids_predict[y]]) # print("Time - transform format", time.time() - st_time) return objs_pred, rels_pred, feats_pred