コード例 #1
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def node_betweenness_centrality(tree):
    '''Returns betweenness centrality of all nodes in tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    return nx.betweenness_centrality(tree)
コード例 #2
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_diameter(tree):
    '''Returns largest distance between any two nodes in tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    M = len(tree.edges())
    return max(max(nx.shortest_path_length(tree).values()).values()) / M
コード例 #3
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_degree_divergence(tree):
    '''Returns kappa, a metric representing the broadness of the degree distribution
    of the tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    degrees = np.array(node_degree(tree).values())
    return np.mean(degrees ** 2) / np.mean(degrees)
コード例 #4
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_leaf_number(tree):
    '''Returns number of leaves of tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    degrees = np.array(nx.degree(tree).values())
    M = len(tree.edges())
    return len(degrees[degrees == 1]) / M
コード例 #5
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_heirarchy(tree):
    '''Returns a metric representing the trade-off between integrating and overload
    of central nodes of the tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    n_leaf = tree_leaf_number(tree)
    M = len(tree.edges())
    bc_max = max(node_betweenness_centrality(tree).values())
    return n_leaf / (2 * M * bc_max)
コード例 #6
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_radius(tree, norm=False):
    '''Returns the value of the node with the smallest average shortest path length.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    if norm:
        M = len(tree.edges())
        return tree_radius(tree) / M
    else:
        return min(node_eccentricity(tree).values())
コード例 #7
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_max_degree(tree, norm=False):
    '''Returns maximum degree centrality of tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    if norm:
        M = len(tree.edges())
        return tree_max_degree(tree) / M
    else:
        return max(node_degree(tree).values())
コード例 #8
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def node_degree(tree, norm=False):
    '''Returns degree centrality of all nodes in tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    if norm:
        M = len(tree.edges())
        return node_degree(tree) / M
    else:
        return nx.degree(tree)
コード例 #9
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def tree_eccentricity_difference(tree, norm=False):
    '''Returns the difference in values between the nodes with the smallest and 
    largest average shortest path lengths.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    ecc = node_eccentricity(tree).values()
    if norm:
        M = len(tree.edges())
        return max(ecc / M) - min(ecc / M)
    else:
        return max(ecc) - min(ecc)
コード例 #10
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def node_eccentricity(tree, norm=False):
    '''Returns average shortest path length of all nodes in tree.
    
    INPUT
    -----
    tree : networkx graph
    '''
    utils.check_spanning_tree(tree)
    lengths = nx.shortest_path_length(tree)
    avg_lengths = []
    for n in tree.nodes():
        lengths[n].pop(n)
        avg_lengths.append(np.mean(lengths[n].values()))
    if norm:
        M = len(tree.edges())
        return node_eccentricity(tree) / M
    else:
        return dict(zip(range(len(avg_lengths)), avg_lengths)) 
コード例 #11
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def kruskals_minimum_spanning_tree(g):
    ''' Find minimum spanning tree based on distance edge attribute.

    Parameters
    ----------
    g: weighted undirected networkx graph

    Returns
    -------
    mst_g : weighted undirected networkx graph
       mimimum spanning tree graph
    mst_mat : ndarray
       minimum spanning tree adjacency matrix
    '''
    if not g.get_edge_data(0,1)['distance']:
        utils.add_distance_edge_attr(g)
    mst_g = nx.minimum_spanning_tree(g, weight='distance')
    mst_mat = nx.to_numpy_matrix(mst_g)
    utils.check_spanning_tree(mst_g)
    return mst_g, mst_mat
コード例 #12
0
ファイル: tree.py プロジェクト: klarnemann/network_simulation
def prims_minimum_spanning_tree(input_g, seed=None):
    """
    Prim's Algorithm : Finds order of nodes added to minimum spanning tree.
    
    Parameters
    ----------
    input_g : weighted networkx graph
    seed : int
       starting seed node of networkx graph
       if None, seed node randomly selected
        
    Returns
    -------
    mst_g : networkx graph
       minimum spanning tree graph
    curr_nodes : list
       order nodes added to the tree
    """
    if not seed:
        seed = int(np.random.choice(input_g.nodes(),1))
    if not input_g.get_edge_data(0,1)['distance']:
        utils.add_distance_edge_attr(input_g)
    g = input_g.copy()
    curr_nodes, curr_edges = [seed], []
    nodes = g.nodes()
    while len(curr_nodes) < len(nodes):
        curr_close, curr_dist, curr_edge = 1, np.inf, (0, 0)
        for node in curr_nodes:
            for edge in g.edges(node, data = True):
                if edge[1] in curr_nodes:
                    continue
                else:
                    if edge[2]['distance'] < curr_dist:
                        g.remove_edge(edge[0], edge[1])
                        curr_close, curr_dist, curr_edge = edge[1], edge[2]['distance'], edge
        curr_nodes.append(curr_close)
        curr_edges.append(curr_edge)
    mst_g = nx.Graph()
    mst_g.add_edges_from(curr_edges)
    utils.check_spanning_tree(mst_g)
    return mst_g, curr_nodes