コード例 #1
0
ファイル: anchors.py プロジェクト: deepaksharma84/Retina_net
def compute_gt_annotations(anchors,
                           annotations,
                           negative_overlap=0.4,
                           positive_overlap=0.5):
    """ Obtain indices of gt annotations with the greatest overlap.

    Args
        anchors: np.array of annotations of shape (N, 4) for (x1, y1, x2, y2).
        annotations: np.array of shape (N, 5) for (x1, y1, x2, y2, label).
        negative_overlap: IoU overlap for negative anchors (all anchors with overlap < negative_overlap are negative).
        positive_overlap: IoU overlap or positive anchors (all anchors with overlap > positive_overlap are positive).

    Returns
        positive_indices: indices of positive anchors
        ignore_indices: indices of ignored anchors
        argmax_overlaps_inds: ordered overlaps indices
    """

    overlaps = compute_overlap(anchors.astype(np.float64),
                               annotations.astype(np.float64))
    argmax_overlaps_inds = np.argmax(overlaps, axis=1)
    max_overlaps = overlaps[np.arange(overlaps.shape[0]), argmax_overlaps_inds]

    # assign "dont care" labels
    positive_indices = max_overlaps >= positive_overlap
    ignore_indices = (max_overlaps > negative_overlap) & ~positive_indices

    return positive_indices, ignore_indices, argmax_overlaps_inds
コード例 #2
0
def find_overlap_artifacts(artifacts):
    '''Find indices of bad_epochs that overlap with each other.'''
    overlap_indices = []
    for i, a in enumerate(artifacts):
        if i > len(artifacts) - 2: pass
        elif utils.compute_overlap(a.st_sample, a.et_sample,
                                   artifacts[i + 1].st_sample,
                                   artifacts[i + 1].et_sample) > 0:
            overlap_indices.append([i, i + 1])
    return overlap_indices
コード例 #3
0
	def exclude_artifact_words(self):
		'''Set words which overlap with artifact timeframe to usable == False, recounts nwords.
		sets the artifact id to the word object 
		WIP: maybe seperate field for artifact usability on the word object
		'''
		self.nallwords = self.nwords
		if self.artifacts == 'NA' or type(self.st_sample) != int: return 0
		for w in self.words:
			for a in self.artifacts:
				o = utils.compute_overlap(w.st_sample - self.st_sample,w.et_sample - self.st_sample,a.st_sample,a.et_sample)
				if o > 0:
					w.set_artifact(a)
					break
		self.nwords = len([w for w in self.words if w.usable])
		self.ncwords = len([w for w in self.words if w.usable and hasattr(w,'pos') and w.pos.content_word])
		self.nexcluded = self.nallwords - self.nwords
コード例 #4
0
    def _generate_labels(self, visual_data: List[torch.Tensor], captions: List[Caption]):
        """
        :param visual_data: a list of extracted features from videos
        :param textual_data: list of annotations
        :returns labels for the samples
        """

        labels = []
        for v, s in zip(visual_data, captions):
            T = v.shape[0]
            label = torch.zeros([T, self.K], dtype=torch.int32)
            start_time, end_time = s.start_time, s.end_time

            for t in range(T):
                for k in range(self.K):
                    if (compute_overlap((t - (k+1) * self.delta) * self.sample_rate / self.fps,
                                        t * self.sample_rate / self.fps, 
                                        start_time, end_time)) > self.threshold:
                        label[t, k] = 1

            labels.append(label)

        return pad_labels(labels)  # torch.Tensor with shape (num_labels, T, K)
コード例 #5
0
    def evaluate(self,
                 generator,
                 iou_threshold=0.3,
                 score_threshold=0.3,
                 max_detections=100,
                 save_path=None):
        """ Evaluate a given dataset using a given model.
        code originally from https://github.com/fizyr/keras-retinanet

        # Arguments
            generator       : The generator that represents the dataset to evaluate.
            model           : The model to evaluate.
            iou_threshold   : The threshold used to consider when a detection is positive or negative.
            score_threshold : The score confidence threshold to use for detections.
            max_detections  : The maximum number of detections to use per image.
            save_path       : The path to save images with visualized detections to.
        # Returns
            A dict mapping class names to mAP scores.
        """
        # gather all detections and annotations
        all_detections = [[None for i in range(generator.num_classes())]
                          for j in range(generator.size())]
        all_annotations = [[None for i in range(generator.num_classes())]
                           for j in range(generator.size())]

        for i in range(generator.size()):
            raw_image = generator.load_image(i)
            raw_height, raw_width, raw_channels = raw_image.shape

            # make the boxes and the labels
            pred_boxes = self.predict(raw_image)

            score = np.array([box.score for box in pred_boxes])
            pred_labels = np.array([box.label for box in pred_boxes])

            if len(pred_boxes) > 0:
                pred_boxes = np.array([[
                    box.xmin * raw_width, box.ymin * raw_height,
                    box.xmax * raw_width, box.ymax * raw_height, box.score
                ] for box in pred_boxes])
            else:
                pred_boxes = np.array([[]])

            # sort the boxes and the labels according to scores
            score_sort = np.argsort(-score)
            pred_labels = pred_labels[score_sort]
            pred_boxes = pred_boxes[score_sort]

            # copy detections to all_detections
            for label in range(generator.num_classes()):
                all_detections[i][label] = pred_boxes[pred_labels == label, :]

            annotations = generator.load_annotation(i)

            # copy detections to all_annotations
            for label in range(generator.num_classes()):
                all_annotations[i][label] = annotations[annotations[:, 4] ==
                                                        label, :4].copy()

        # compute mAP by comparing all detections and all annotations
        average_precisions = {}

        for label in range(generator.num_classes()):
            false_positives = np.zeros((0, ))
            true_positives = np.zeros((0, ))
            scores = np.zeros((0, ))
            num_annotations = 0.0

            for i in range(generator.size()):
                detections = all_detections[i][label]
                annotations = all_annotations[i][label]
                num_annotations += annotations.shape[0]
                detected_annotations = []

                for d in detections:
                    scores = np.append(scores, d[4])

                    if annotations.shape[0] == 0:
                        false_positives = np.append(false_positives, 1)
                        true_positives = np.append(true_positives, 0)
                        continue

                    overlaps = compute_overlap(np.expand_dims(d, axis=0),
                                               annotations)
                    assigned_annotation = np.argmax(overlaps, axis=1)
                    max_overlap = overlaps[0, assigned_annotation]

                    if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
                        false_positives = np.append(false_positives, 0)
                        true_positives = np.append(true_positives, 1)
                        detected_annotations.append(assigned_annotation)
                    else:
                        false_positives = np.append(false_positives, 1)
                        true_positives = np.append(true_positives, 0)

            # no annotations -> AP for this class is 0 (is this correct?)
            if num_annotations == 0:
                average_precisions[label] = 0
                continue

            # sort by score
            indices = np.argsort(-scores)
            false_positives = false_positives[indices]
            true_positives = true_positives[indices]

            # compute false positives and true positives
            false_positives = np.cumsum(false_positives)
            true_positives = np.cumsum(true_positives)

            # compute recall and precision
            recall = true_positives / num_annotations
            precision = true_positives / np.maximum(
                true_positives + false_positives,
                np.finfo(np.float64).eps)

            # compute average precision
            average_precision = compute_ap(recall, precision)
            average_precisions[label] = average_precision

        return average_precisions
コード例 #6
0
        def evaluate(self):

            self.yolo.model = self.model
            # gather all detections and annotations
            all_detections = [[
                None for i in range(self.generator.num_classes())
            ] for j in range(self.generator.size())]
            all_annotations = [[
                None for i in range(self.generator.num_classes())
            ] for j in range(self.generator.size())]

            for i in range(self.generator.size()):
                raw_image = self.generator.load_image(i)
                raw_height, raw_width, raw_channels = raw_image.shape

                # make the boxes and the labels
                pred_boxes = self.yolo.predict(raw_image)

                score = np.array([box.score for box in pred_boxes])
                pred_labels = np.array([box.label for box in pred_boxes])

                if len(pred_boxes) > 0:
                    pred_boxes = np.array([[
                        box.xmin * raw_width, box.ymin * raw_height,
                        box.xmax * raw_width, box.ymax * raw_height, box.score
                    ] for box in pred_boxes])
                else:
                    pred_boxes = np.array([[]])

                # sort the boxes and the labels according to scores
                score_sort = np.argsort(-score)
                pred_labels = pred_labels[score_sort]
                pred_boxes = pred_boxes[score_sort]

                # copy detections to all_detections
                for label in range(self.generator.num_classes()):
                    all_detections[i][label] = pred_boxes[pred_labels ==
                                                          label, :]

                annotations = self.generator.load_annotation(i)

                # copy detections to all_annotations
                for label in range(self.generator.num_classes()):
                    all_annotations[i][label] = annotations[
                        annotations[:, 4] == label, :4].copy()

            # compute mAP by comparing all detections and all annotations
            average_precisions = {}

            for label in range(self.generator.num_classes()):
                false_positives = np.zeros((0, ))
                true_positives = np.zeros((0, ))
                scores = np.zeros((0, ))
                num_annotations = 0.0

                for i in range(self.generator.size()):
                    detections = all_detections[i][label]
                    annotations = all_annotations[i][label]
                    num_annotations += annotations.shape[0]
                    detected_annotations = []

                    for d in detections:
                        scores = np.append(scores, d[4])

                        if annotations.shape[0] == 0:
                            false_positives = np.append(false_positives, 1)
                            true_positives = np.append(true_positives, 0)
                            continue

                        overlaps = compute_overlap(np.expand_dims(d, axis=0),
                                                   annotations)
                        assigned_annotation = np.argmax(overlaps, axis=1)
                        max_overlap = overlaps[0, assigned_annotation]

                        if max_overlap >= self.iou_threshold and assigned_annotation not in detected_annotations:
                            false_positives = np.append(false_positives, 0)
                            true_positives = np.append(true_positives, 1)
                            detected_annotations.append(assigned_annotation)
                        else:
                            false_positives = np.append(false_positives, 1)
                            true_positives = np.append(true_positives, 0)

                # no annotations -> AP for this class is 0 (is this correct?)
                if num_annotations == 0:
                    average_precisions[label] = 0
                    continue

                # sort by score
                indices = np.argsort(-scores)
                false_positives = false_positives[indices]
                true_positives = true_positives[indices]

                # compute false positives and true positives
                false_positives = np.cumsum(false_positives)
                true_positives = np.cumsum(true_positives)

                # compute recall and precision
                recall = true_positives / num_annotations
                precision = true_positives / np.maximum(
                    true_positives + false_positives,
                    np.finfo(np.float64).eps)

                # compute average precision
                average_precision = compute_ap(recall, precision)
                average_precisions[label] = average_precision

            return average_precisions
コード例 #7
0
    def evaluate(self,
                 model,
                 imgs,
                 obj_threshold=0.3,
                 nms_threshold=0.3,
                 iou_threshold=0.5):
        """
		# Arguments
			model           : The model to evaluate.
			imgs            : list of parsed test_img dictionaries.
			obj_threshold 	: The score confidence threshold to use for detections.
			nms_threshold   : The threshold used to consider when a detection is positive or negative.
		# Returns
			A dict mapping class names to mAP scores.
		"""
        # gather all detections and annotations

        test_size = len(imgs)

        all_detections = [[None for i in range(self.n_class)]
                          for j in range(test_size)]
        all_annotations = [[None for i in range(self.n_class)]
                           for j in range(test_size)]
        ious = []

        for i in range(test_size):

            image_name = imgs[i]['filename']

            if '.jpg' not in image_name and '.png' not in image_name:
                image_name += '.jpg'

            raw_image = cv2.imread(image_name)

            raw_height, raw_width, raw_channels = raw_image.shape

            # make the boxes and the labels
            pred_boxes = self.predict(model, raw_image, obj_threshold,
                                      nms_threshold)

            score = np.array([box.score for box in pred_boxes])
            pred_labels = np.array([box.label for box in pred_boxes])

            if len(pred_boxes) > 0:
                pred_boxes = np.array([[
                    box.xmin * raw_width, box.ymin * raw_height,
                    box.xmax * raw_width, box.ymax * raw_height, box.score
                ] for box in pred_boxes])
            else:
                pred_boxes = np.array([[]])

            # sort the boxes and the labels according to scores
            score_sort = np.argsort(-score)
            pred_labels = pred_labels[score_sort]
            pred_boxes = pred_boxes[score_sort]

            # copy detections to all_detections
            for label in range(self.n_class):
                all_detections[i][label] = pred_boxes[pred_labels == label, :]

            annotations = load_annotation(imgs, i, self.labels)

            # copy detections to all_annotations
            for label in range(self.n_class):
                all_annotations[i][label] = annotations[annotations[:, 4] ==
                                                        label, :4].copy()

        # compute mAP by comparing all detections and all annotations
        average_precisions = {}

        for label in range(self.n_class):
            false_positives = np.zeros((0, ))
            true_positives = np.zeros((0, ))
            scores = np.zeros((0, ))
            num_annotations = 0.0

            for i in range(test_size):
                detections = all_detections[i][label]
                annotations = all_annotations[i][label]
                num_annotations += annotations.shape[0]
                detected_annotations = []

                for d in detections:
                    scores = np.append(scores, d[4])

                    if annotations.shape[0] == 0:
                        false_positives = np.append(false_positives, 1)
                        true_positives = np.append(true_positives, 0)
                        continue

                    overlaps = compute_overlap(np.expand_dims(d, axis=0),
                                               annotations)
                    assigned_annotation = np.argmax(overlaps, axis=1)
                    max_overlap = overlaps[0, assigned_annotation]

                    ious.append(max_overlap)

                    if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
                        false_positives = np.append(false_positives, 0)
                        true_positives = np.append(true_positives, 1)
                        detected_annotations.append(assigned_annotation)
                    else:
                        false_positives = np.append(false_positives, 1)
                        true_positives = np.append(true_positives, 0)

            # no annotations -> AP for this class is 0 (is this correct?)
            if num_annotations == 0:
                average_precisions[label] = 0
                continue

            # sort by score
            indices = np.argsort(-scores)
            false_positives = false_positives[indices]
            true_positives = true_positives[indices]

            # compute false positives and true positives
            false_positives = np.cumsum(false_positives)
            true_positives = np.cumsum(true_positives)

            # compute recall and precision
            recall = true_positives / num_annotations
            precision = true_positives / np.maximum(
                true_positives + false_positives,
                np.finfo(np.float64).eps)

            # compute average precision
            average_precision = compute_ap(recall, precision)
            average_precisions[label] = average_precision

        map_dict = {}
        # print evaluation
        for label, average_precision in average_precisions.items():
            map_dict[self.labels[label]] = average_precision
            print(self.labels[label], '{:.4f}'.format(average_precision))

        print('mAP: {:.4f}'.format(
            sum(average_precisions.values()) / len(average_precisions)))
        print('average IOU: {:.4f}'.format(np.mean(ious)))

        average_map = sum(
            average_precisions.values()) / len(average_precisions)

        return [average_map, map_dict, np.mean(ious)]
コード例 #8
0
ファイル: frontend.py プロジェクト: souvikb1812/keras-yolo2
    def evaluate(self, 
                 generator, 
                 iou_threshold=0.3,
                 score_threshold=0.3,
                 max_detections=100,
                 save_path=None):
        """ Evaluate a given dataset using a given model.
        code originally from https://github.com/fizyr/keras-retinanet

        # Arguments
            generator       : The generator that represents the dataset to evaluate.
            model           : The model to evaluate.
            iou_threshold   : The threshold used to consider when a detection is positive or negative.
            score_threshold : The score confidence threshold to use for detections.
            max_detections  : The maximum number of detections to use per image.
            save_path       : The path to save images with visualized detections to.
        # Returns
            A dict mapping class names to mAP scores.
        """    
        # gather all detections and annotations
        all_detections     = [[None for i in range(generator.num_classes())] for j in range(generator.size())]
        all_annotations    = [[None for i in range(generator.num_classes())] for j in range(generator.size())]

        for i in range(generator.size()):
            raw_image = generator.load_image(i)
            raw_height, raw_width, raw_channels = raw_image.shape

            # make the boxes and the labels
            pred_boxes  = self.predict(raw_image)

            
            score = np.array([box.score for box in pred_boxes])
            pred_labels = np.array([box.label for box in pred_boxes])        
            
            if len(pred_boxes) > 0:
                pred_boxes = np.array([[box.xmin*raw_width, box.ymin*raw_height, box.xmax*raw_width, box.ymax*raw_height, box.score] for box in pred_boxes])
            else:
                pred_boxes = np.array([[]])  
            
            # sort the boxes and the labels according to scores
            score_sort = np.argsort(-score)
            pred_labels = pred_labels[score_sort]
            pred_boxes  = pred_boxes[score_sort]
            
            # copy detections to all_detections
            for label in range(generator.num_classes()):
                all_detections[i][label] = pred_boxes[pred_labels == label, :]
                
            annotations = generator.load_annotation(i)
            
            # copy detections to all_annotations
            for label in range(generator.num_classes()):
                all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy()
                
        # compute mAP by comparing all detections and all annotations
        average_precisions = {}
        
        for label in range(generator.num_classes()):
            false_positives = np.zeros((0,))
            true_positives  = np.zeros((0,))
            scores          = np.zeros((0,))
            num_annotations = 0.0

            for i in range(generator.size()):
                detections           = all_detections[i][label]
                annotations          = all_annotations[i][label]
                num_annotations     += annotations.shape[0]
                detected_annotations = []

                for d in detections:
                    scores = np.append(scores, d[4])

                    if annotations.shape[0] == 0:
                        false_positives = np.append(false_positives, 1)
                        true_positives  = np.append(true_positives, 0)
                        continue

                    overlaps            = compute_overlap(np.expand_dims(d, axis=0), annotations)
                    assigned_annotation = np.argmax(overlaps, axis=1)
                    max_overlap         = overlaps[0, assigned_annotation]

                    if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
                        false_positives = np.append(false_positives, 0)
                        true_positives  = np.append(true_positives, 1)
                        detected_annotations.append(assigned_annotation)
                    else:
                        false_positives = np.append(false_positives, 1)
                        true_positives  = np.append(true_positives, 0)

            # no annotations -> AP for this class is 0 (is this correct?)
            if num_annotations == 0:
                average_precisions[label] = 0
                continue

            # sort by score
            indices         = np.argsort(-scores)
            false_positives = false_positives[indices]
            true_positives  = true_positives[indices]

            # compute false positives and true positives
            false_positives = np.cumsum(false_positives)
            true_positives  = np.cumsum(true_positives)

            # compute recall and precision
            recall    = true_positives / num_annotations
            precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)

            # compute average precision
            average_precision  = compute_ap(recall, precision)  
            average_precisions[label] = average_precision

        return average_precisions