コード例 #1
0
def encode_label(image, gt_boxes):
    target_scores = np.zeros(shape=[45, 60, 9,
                                    2])  # 0: background, 1: foreground, ,
    target_bboxes = np.zeros(shape=[45, 60, 9, 4])  # t_x, t_y, t_w, t_h
    target_masks = np.zeros(
        shape=[45, 60, 9])  # negative_samples: -1, positive_samples: 1
    for i in range(45):  # y: height
        for j in range(60):  # x: width
            for k in range(9):
                center_x = j * grid_width + grid_width * 0.5
                center_y = i * grid_height + grid_height * 0.5
                xmin = center_x - wandhG[k][0] * 0.5
                ymin = center_y - wandhG[k][1] * 0.5
                xmax = center_x + wandhG[k][0] * 0.5
                ymax = center_y + wandhG[k][1] * 0.5
                # print(xmin, ymin, xmax, ymax)
                # ignore cross-boundary anchors
                if (xmin > -5) & (ymin > -5) & (xmax < (image_width + 5)) & (
                        ymax < (image_height + 5)):
                    anchor_boxes = np.array([xmin, ymin, xmax, ymax])
                    anchor_boxes = np.expand_dims(anchor_boxes, axis=0)
                    # compute iou between this anchor and all ground-truth boxes in image.
                    ious = compute_iou(anchor_boxes, gt_boxes)
                    positive_masks = ious > pos_thresh
                    negative_masks = ious < neg_thresh

                    if np.any(positive_masks):
                        plot_boxes_on_image(image, anchor_boxes, thickness=1)
                        print("=> encode: %d, %d, %d" % (i, j, k))
                        cv2.circle(image,
                                   center=(int(0.5 * (xmin + xmax)),
                                           int(0.5 * (ymin + ymax))),
                                   radius=1,
                                   color=[255, 0, 0],
                                   thickness=4)

                        target_scores[i, j, k, 1] = 1.
                        target_masks[i, j,
                                     k] = 1  # labeled as a positive sample
                        # find out which ground-truth box matches this anchor
                        max_iou_idx = np.argmax(ious)
                        selected_gt_boxes = gt_boxes[max_iou_idx]
                        target_bboxes[i, j, k] = compute_regression(
                            selected_gt_boxes, anchor_boxes[0])

                    if np.all(negative_masks):
                        target_scores[i, j, k, 0] = 1.
                        target_masks[i, j,
                                     k] = -1  # labeled as a negative sample
                        cv2.circle(image,
                                   center=(int(0.5 * (xmin + xmax)),
                                           int(0.5 * (ymin + ymax))),
                                   radius=1,
                                   color=[0, 0, 0],
                                   thickness=4)
    Image.fromarray(image).show()
    return target_scores, target_bboxes, target_masks
コード例 #2
0
def encode_label(gt_boxes):
    target_scores = np.zeros(shape=[wnum, hnum, 9,
                                    2])  # 0: background, 1: foreground, ,
    target_bboxes = np.zeros(shape=[wnum, hnum, 9, 4])  # t_x, t_y, t_w, t_h
    target_masks = np.zeros(
        shape=[wnum, hnum, 9])  # negative_samples: -1, positive_samples: 1
    for i in range(wnum):  # y: height
        for j in range(hnum):  # x: width
            for k in range(9):
                center_x = j * grid_width + grid_width * 0.5
                center_y = i * grid_height + grid_height * 0.5
                xmin = center_x - wandhG[k][0] * 0.5
                ymin = center_y - wandhG[k][1] * 0.5
                xmax = center_x + wandhG[k][0] * 0.5
                ymax = center_y + wandhG[k][1] * 0.5
                # print(xmin, ymin, xmax, ymax)
                # ignore cross-boundary anchors
                if (xmin > -5) & (ymin > -5) & (xmax < (image_width + 5)) & (
                        ymax < (image_height + 5)):
                    anchor_boxes = np.array([xmin, ymin, xmax, ymax])
                    anchor_boxes = np.expand_dims(anchor_boxes, axis=0)
                    # compute iou between this anchor and all ground-truth boxes in image.
                    ious = compute_iou(anchor_boxes, gt_boxes)
                    positive_masks = ious >= pos_thresh
                    negative_masks = ious <= neg_thresh

                    if np.any(positive_masks):
                        target_scores[i, j, k, 1] = 1.
                        target_masks[i, j,
                                     k] = 1  # labeled as a positive sample
                        # find out which ground-truth box matches this anchor
                        max_iou_idx = np.argmax(ious)
                        selected_gt_boxes = gt_boxes[max_iou_idx]
                        target_bboxes[i, j, k] = compute_regression(
                            selected_gt_boxes, anchor_boxes[0])

                    if np.all(negative_masks):
                        target_scores[i, j, k, 0] = 1.
                        target_masks[i, j,
                                     k] = -1  # labeled as a negative sample
    return target_scores, target_bboxes, target_masks
コード例 #3
0
                                        thickness=1)
                    print("=> Encoding positive sample: %d, %d, %d" %
                          (i, j, k))
                    cv2.circle(encoded_image,
                               center=(int(0.5 * (xmin + xmax)),
                                       int(0.5 * (ymin + ymax))),
                               radius=1,
                               color=[255, 0, 0],
                               thickness=4)

                    target_scores[i, j, k, 1] = 1.
                    target_masks[i, j, k] = 1  # labeled as a positive sample
                    # find out which ground-truth box matches this anchor
                    max_iou_idx = np.argmax(ious)
                    selected_gt_boxes = gt_boxes[max_iou_idx]
                    target_bboxes[i, j, k] = compute_regression(
                        selected_gt_boxes, anchor_boxes[0])

                if np.all(negative_masks):
                    target_scores[i, j, k, 0] = 1.
                    target_masks[i, j, k] = -1  # labeled as a negative sample
                    cv2.circle(encoded_image,
                               center=(int(0.5 * (xmin + xmax)),
                                       int(0.5 * (ymin + ymax))),
                               radius=1,
                               color=[0, 0, 0],
                               thickness=4)

Image.fromarray(encoded_image).show()

################################### DECODE OUTPUT #################################