コード例 #1
0
      for i in range(proc_g):
         index = frame_pos + i
         _, frame = cap.read()
         frame = cv2.resize(frame, (t_w, t_h))
         nchannels = frame.shape[2]
         if nchannels == 1 or not opt.disable_colorization:
            frame_l = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
            cv2.imwrite(outputdir_in+'%07d.png'%index, frame_l)
            frame_l = torch.from_numpy(frame_l).view( frame_l.shape[0], frame_l.shape[1], 1 )
            frame_l = frame_l.permute(2, 0, 1).float() # HWC to CHW
            frame_l /= 255.
            frame_l = frame_l.view(1, frame_l.size(0), 1, frame_l.size(1), frame_l.size(2))
         elif nchannels == 3:
            cv2.imwrite(outputdir_in+'%07d.png'%index, frame)
            frame = frame[:,:,::-1] ## BGR -> RGB
            frame_l, frame_ab = utils.convertRGB2LABTensor( frame )
            frame_l = frame_l.view(1, frame_l.size(0), 1, frame_l.size(1), frame_l.size(2))
            frame_ab = frame_ab.view(1, frame_ab.size(0), 1, frame_ab.size(1), frame_ab.size(2))

         input = frame_l if i==0 else torch.cat( (input, frame_l), 2 )
         if nchannels==3 and opt.disable_colorization:
            gtC = frame_ab if i==0 else torch.cat( (gtC, frame_ab), 2 )
      
      input = input.to( device )

      # Perform restoration
      output_l = modelR( input ) # [B, C, T, H, W]

      # Save restoration output without colorization when using the option [--disable_colorization]
      if opt.disable_colorization:
         for i in range( proc_g ):
コード例 #2
0
ファイル: predict.py プロジェクト: tty33/PaddleGAN
    def run(self):
        outputdir = self.output
        outputdir_in = os.path.join(outputdir, 'input/')
        os.makedirs(outputdir_in, exist_ok=True)
        outputdir_out = os.path.join(outputdir, 'output/')
        os.makedirs(outputdir_out, exist_ok=True)

        # Prepare reference images
        if self.colorization:
            if self.reference_dir is not None:
                import glob
                ext_list = ['png', 'jpg', 'bmp']
                reference_files = []
                for ext in ext_list:
                    reference_files += glob.glob(self.reference_dir + '/*.' +
                                                 ext,
                                                 recursive=True)
                aspect_mean = 0
                minedge_dim = 256
                refs = []
                for v in reference_files:
                    refimg = Image.open(v).convert('RGB')
                    w, h = refimg.size
                    aspect_mean += w / h
                    refs.append(refimg)
                aspect_mean /= len(reference_files)
                target_w = int(256 * aspect_mean) if aspect_mean > 1 else 256
                target_h = 256 if aspect_mean >= 1 else int(256 / aspect_mean)

                refimgs = []
                for i, v in enumerate(refs):
                    refimg = utils.addMergin(v,
                                             target_w=target_w,
                                             target_h=target_h)
                    refimg = np.array(refimg).astype('float32').transpose(
                        2, 0, 1) / 255.0
                    refimgs.append(refimg)
                refimgs = paddle.to_tensor(np.array(refimgs).astype('float32'))

                refimgs = paddle.unsqueeze(refimgs, 0)

        # Load video
        cap = cv2.VideoCapture(self.input)
        nframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        v_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
        v_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
        minwh = min(v_w, v_h)
        scale = 1
        if minwh != self.mindim:
            scale = self.mindim / minwh

        t_w = round(v_w * scale / 16.) * 16
        t_h = round(v_h * scale / 16.) * 16
        fps = cap.get(cv2.CAP_PROP_FPS)
        pbar = tqdm(total=nframes)
        block = 5

        # Process
        with paddle.no_grad():
            it = 0
            while True:
                frame_pos = it * block
                if frame_pos >= nframes:
                    break
                cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
                if block >= nframes - frame_pos:
                    proc_g = nframes - frame_pos
                else:
                    proc_g = block

                input = None
                gtC = None
                for i in range(proc_g):
                    index = frame_pos + i
                    _, frame = cap.read()
                    frame = cv2.resize(frame, (t_w, t_h))
                    nchannels = frame.shape[2]
                    if nchannels == 1 or self.colorization:
                        frame_l = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
                        cv2.imwrite(outputdir_in + '%07d.png' % index, frame_l)
                        frame_l = paddle.to_tensor(frame_l.astype('float32'))
                        frame_l = paddle.reshape(
                            frame_l, [frame_l.shape[0], frame_l.shape[1], 1])
                        frame_l = paddle.transpose(frame_l, [2, 0, 1])
                        frame_l /= 255.

                        frame_l = paddle.reshape(frame_l, [
                            1, frame_l.shape[0], 1, frame_l.shape[1],
                            frame_l.shape[2]
                        ])
                    elif nchannels == 3:
                        cv2.imwrite(outputdir_in + '%07d.png' % index, frame)
                        frame = frame[:, :, ::-1]  ## BGR -> RGB
                        frame_l, frame_ab = utils.convertRGB2LABTensor(frame)
                        frame_l = frame_l.transpose([2, 0, 1])
                        frame_ab = frame_ab.transpose([2, 0, 1])
                        frame_l = frame_l.reshape([
                            1, frame_l.shape[0], 1, frame_l.shape[1],
                            frame_l.shape[2]
                        ])
                        frame_ab = frame_ab.reshape([
                            1, frame_ab.shape[0], 1, frame_ab.shape[1],
                            frame_ab.shape[2]
                        ])

                    if input is not None:
                        paddle.concat((input, frame_l), 2)

                    input = frame_l if i == 0 else paddle.concat(
                        (input, frame_l), 2)
                    if nchannels == 3 and not self.colorization:
                        gtC = frame_ab if i == 0 else paddle.concat(
                            (gtC, frame_ab), 2)

                input = paddle.to_tensor(input)

                output_l = self.modelR(input)  # [B, C, T, H, W]

                # Save restoration output without colorization when using the option [--disable_colorization]
                if not self.colorization:
                    for i in range(proc_g):
                        index = frame_pos + i
                        if nchannels == 3:
                            out_l = output_l.detach()[0, :, i]
                            out_ab = gtC[0, :, i]

                            out = paddle.concat(
                                (out_l, out_ab),
                                axis=0).detach().numpy().transpose((1, 2, 0))
                            out = Image.fromarray(
                                np.uint8(utils.convertLAB2RGB(out) * 255))
                            out.save(outputdir_out + '%07d.png' % (index))
                        else:
                            raise ValueError('channels of imag3 must be 3!')

                # Perform colorization
                else:
                    if self.reference_dir is None:
                        output_ab = self.modelC(output_l)
                    else:
                        output_ab = self.modelC(output_l, refimgs)
                    output_l = output_l.detach()
                    output_ab = output_ab.detach()

                    for i in range(proc_g):
                        index = frame_pos + i
                        out_l = output_l[0, :, i, :, :]
                        out_c = output_ab[0, :, i, :, :]
                        output = paddle.concat((out_l, out_c),
                                               axis=0).numpy().transpose(
                                                   (1, 2, 0))
                        output = Image.fromarray(
                            np.uint8(utils.convertLAB2RGB(output) * 255))
                        output.save(outputdir_out + '%07d.png' % index)

                it = it + 1
                pbar.update(proc_g)

            # Save result videos
            outfile = os.path.join(outputdir,
                                   self.input.split('/')[-1].split('.')[0])
            cmd = 'ffmpeg -y -r %d -i %s%%07d.png -vcodec libx264 -pix_fmt yuv420p -r %d %s_in.mp4' % (
                fps, outputdir_in, fps, outfile)
            subprocess.call(cmd, shell=True)
            cmd = 'ffmpeg -y -r %d -i %s%%07d.png -vcodec libx264 -pix_fmt yuv420p -r %d %s_out.mp4' % (
                fps, outputdir_out, fps, outfile)
            subprocess.call(cmd, shell=True)
            cmd = 'ffmpeg -y -i %s_in.mp4 -vf "[in] pad=2.01*iw:ih [left];movie=%s_out.mp4[right];[left][right] overlay=main_w/2:0,scale=2*iw/2:2*ih/2[out]" %s_comp.mp4' % (
                outfile, outfile, outfile)
            subprocess.call(cmd, shell=True)

        cap.release()
        pbar.close()
        return outputdir_out, '%s_out.mp4' % outfile