def train(self, num_steps_limit, checkpoint_steps, checkpoint_path): global_step_ev = tf.compat.v1.train.global_step(self.sess, self.global_step) best_eval_metric = (0.0 if self.eval_metric_type == 'acc' else 1.e16) while global_step_ev <= num_steps_limit: if global_step_ev % checkpoint_steps == 0: # evaluating model when checkpointing eval_tr_metric_ev, eval_val_metric_ev = utils.evaluate_and_average( self.sess, [self.eval_tr_metric, self.eval_val_metric], 10) print("[ Step: {1} meta-valid context_{0}: {2:.5f}, " "meta-valid target_{0}: {3:.5f} ]".format(self.eval_metric_type, global_step_ev, eval_tr_metric_ev, eval_val_metric_ev)) # copy best checkpoints for early stopping if self.eval_metric_type == 'acc': if eval_val_metric_ev > best_eval_metric: utils.copy_checkpoint(checkpoint_path, global_step_ev, eval_val_metric_ev, eval_metric_type=self.eval_metric_type) best_eval_metric = eval_val_metric_ev else: if eval_val_metric_ev < best_eval_metric: utils.copy_checkpoint(checkpoint_path, global_step_ev, eval_val_metric_ev, eval_metric_type=self.eval_metric_type) best_eval_metric = eval_val_metric_ev self.visualise(save_name="{0}-{1}".format(self.name, global_step_ev)) if global_step_ev == num_steps_limit: global_step_ev += 1 continue # train step _, train_tr_metric_ev, train_val_metric_ev = self.sess.run([self.train_op, self.train_tr_metric, self.train_val_metric]) global_step_ev = tf.compat.v1.train.global_step(self.sess, self.global_step)
def run_training_loop(checkpoint_path, a, b, layers): """Runs the training loop, either saving a checkpoint or evaluating it.""" outer_model_config = config.get_outer_model_config() tf.logging.set_verbosity(tf.logging.INFO) tf.logging.info("outer_model_config: {}".format(outer_model_config)) (train_op, global_step, metatrain_accuracy, metavalid_accuracy, metatest_accuracy) = construct_graph(outer_model_config, a, b, layers) num_steps_limit = outer_model_config["num_steps_limit"] best_metavalid_accuracy = 0. tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True with tf.train.MonitoredTrainingSession( checkpoint_dir=checkpoint_path, save_summaries_steps=FLAGS.checkpoint_steps, log_step_count_steps=FLAGS.checkpoint_steps, save_checkpoint_steps=FLAGS.checkpoint_steps, # summary_dir=checkpoint_path, config=tf_config) as sess: if not FLAGS.evaluation_mode: global_step_ev = sess.run(global_step) while global_step_ev < num_steps_limit: if global_step_ev % FLAGS.checkpoint_steps == 0: # Just after saving checkpoint, calculate accuracy 10 times and save # the best checkpoint for early stopping. metavalid_accuracy_ev = utils.evaluate_and_average( sess, metavalid_accuracy, 10) tf.logging.info("Step: {} meta-valid accuracy: {}".format( global_step_ev, metavalid_accuracy_ev)) if metavalid_accuracy_ev > best_metavalid_accuracy: utils.copy_checkpoint(checkpoint_path, global_step_ev, metavalid_accuracy_ev) best_metavalid_accuracy = metavalid_accuracy_ev _, global_step_ev, metatrain_accuracy_ev = sess.run( [train_op, global_step, metatrain_accuracy]) if global_step_ev % (FLAGS.checkpoint_steps // 2) == 0: tf.logging.info("Step: {} meta-train accuracy: {}".format( global_step_ev, metatrain_accuracy_ev)) else: assert not FLAGS.checkpoint_steps num_metatest_estimates = ( 10000 // outer_model_config["metatest_batch_size"]) test_accuracy = utils.evaluate_and_average(sess, metatest_accuracy, num_metatest_estimates, has_std=True) return test_accuracy
def run_training_loop(checkpoint_path): """Runs the training loop, either saving a checkpoint or evaluating it.""" outer_model_config = config.get_outer_model_config() tf.logging.info("outer_model_config: {}".format(outer_model_config)) (train_op, global_step, metatrain_accuracy, metavalid_accuracy, metatest_accuracy) = construct_graph(outer_model_config) num_steps_limit = outer_model_config["num_steps_limit"] best_metavalid_accuracy = 0. with tf.train.MonitoredTrainingSession( checkpoint_dir=checkpoint_path, save_summaries_steps=FLAGS.checkpoint_steps, log_step_count_steps=FLAGS.checkpoint_steps, save_checkpoint_steps=FLAGS.checkpoint_steps, summary_dir=checkpoint_path) as sess: if not FLAGS.evaluation_mode: global_step_ev = sess.run(global_step) while global_step_ev < num_steps_limit: if global_step_ev % FLAGS.checkpoint_steps == 0: # Just after saving checkpoint, calculate accuracy 10 times and save # the best checkpoint for early stopping. metavalid_accuracy_ev = utils.evaluate_and_average( sess, metavalid_accuracy, 10) tf.logging.info("Step: {} meta-valid accuracy: {}".format( global_step_ev, metavalid_accuracy_ev)) if metavalid_accuracy_ev > best_metavalid_accuracy: utils.copy_checkpoint(checkpoint_path, global_step_ev, metavalid_accuracy_ev) best_metavalid_accuracy = metavalid_accuracy_ev _, global_step_ev, metatrain_accuracy_ev = sess.run( [train_op, global_step, metatrain_accuracy]) if global_step_ev % (FLAGS.checkpoint_steps // 2) == 0: tf.logging.info("Step: {} meta-train accuracy: {}".format( global_step_ev, metatrain_accuracy_ev)) global_step_ev += 1 else: # assert not FLAGS.checkpoint_steps num_metatest_estimates = ( 10000 // outer_model_config["metatest_batch_size"]) # num_metatest_estimates = 10 test_accuracy = utils.evaluate_and_average(sess, metatest_accuracy, num_metatest_estimates) tf.logging.info("Metatest accuracy: %f", test_accuracy) with tf.gfile.Open(os.path.join(checkpoint_path, "test_accuracy"), "wb") as f: pickle.dump(test_accuracy, f)
def run_training_loop(checkpoint_path): """Runs the training loop, either saving a checkpoint or evaluating it.""" outer_model_config = config.get_outer_model_config() tf.logging.info("outer_model_config: {}".format(outer_model_config)) (train_op, global_step, metatrain_accuracy, metavalid_accuracy, metatest_accuracy, kl_components, adapted_kl_components, kl_zn, adapted_kl_zn, kl, adapted_kl, latents, adapted_latents, spurious) = construct_graph(outer_model_config) num_steps_limit = outer_model_config["num_steps_limit"] best_metavalid_accuracy = 0. # curate summary classes_seen = {} kl_components_hist = [] adapted_kl_components_hist = [] kl_zn_hist = [] adapted_kl_zn_hist = [] kl_hist = [] adapted_kl_hist = [] latents_hist = [] metavalid_accuracy_hist = [] for i in range(5): latents_hist.append([]) kl_components_hist.append([]) adapted_kl_components_hist.append([]) kl_zn_hist.append([]) adapted_kl_zn_hist.append([]) for j in range(64): kl_components_hist[i].append([]) adapted_kl_components_hist[i].append([]) latents_hist[i].append([]) with tf.train.MonitoredTrainingSession( checkpoint_dir=checkpoint_path, save_summaries_steps=FLAGS.checkpoint_steps, log_step_count_steps=FLAGS.checkpoint_steps, save_checkpoint_steps=FLAGS.checkpoint_steps, summary_dir=checkpoint_path) as sess: # hooks=[wandb.tensorflow.WandbHook(steps_per_log=10)]) as sess: if not FLAGS.evaluation_mode: global_step_ev = sess.run(global_step) while global_step_ev < num_steps_limit: if global_step_ev % FLAGS.checkpoint_steps == 0: # Just after saving checkpoint, calculate accuracy 10 times and save # the best checkpoint for early stopping. metavalid_accuracy_ev = utils.evaluate_and_average( sess, metavalid_accuracy, 1) #runs the session for validation # kl_components_ev = utils.evaluate(sess, kl_components) # adapted_kl_components_ev = utils.evaluate(sess, adapted_kl_components) # # kl_zn_ev = utils.evaluate(sess, kl_zn) # adapted_kl_zn_ev = utils.evaluate(sess, adapted_kl_zn) # # # why is there only one kl divergence score for eatch batch. The divergence should be per class per component. # # kl_ev = utils.evaluate(sess, kl) # adapted_kl_ev = utils.evaluate(sess, adapted_kl) # latents_ev = utils.evaluate(sess, latents) adapted_latents_ev = utils.evaluate(sess, adapted_latents) spurious_ev = utils.evaluate(sess, spurious) # for batch in kl_components_ev: # for c in batch: # for components in c: # for i, component in enumerate(components): # cl = int(component[0]) # kl_val = component[1] # if (cl <= 5): # collect data for sampled classes # # for each component # kl_components_hist[cl][i].append(kl_val) # if cl not in classes_seen: # classes_seen[cl] = 1 # # for batch in adapted_kl_components_ev: # for c in batch: # for components in c: # for i, component in enumerate(components): # cl = int(component[0]) # kl_val = component[1] # if (cl <= 5): # collect data for sampled classes # # for each class and component # adapted_kl_components_hist[cl][i].append(kl_val) # # for batch in kl_zn_ev: # batch, 5, 2 # for component in batch: # cl = int(component[0]) # kl_zn_val = component[1] # if (cl <= 5): # collect data for sampled classes # kl_zn_hist[cl].append(kl_zn_val) # # for batch in adapted_kl_zn_ev: # batch, 5, 2 # for component in batch: # cl = int(component[0]) # adapted_kl_zn_val = component[1] # if (cl <= 5): # collect data for sampled classes # adapted_kl_zn_hist[cl].append(adapted_kl_zn_val) # for batch_change, batch_latents in zip(latents_ev - spurious_ev, latents_ev): for k, c in enumerate(batch_change): for j, components in enumerate(c): for i, component in enumerate(components): cl = int(batch_latents[k][j][i][0]) latent_val = component[1] if (cl <= 5): # collect data for sampled classes latents_hist[cl][i].append(latent_val) # # ########## Visualize kl history # _, ax = plt.subplots(5, 2, sharex='col', sharey='row', figsize=(20, 20)) # # for i in range(5): # color = iter(cm.rainbow(np.linspace(0, 1, 64))) # for j in range(64): # c = next(color) # val = kl_components_hist[i][j] # step = range(global_step_ev, global_step_ev+len(val)) # ax[i][0].plot(step, val, c=c) #adds values for each component using a different color # ax[i][1].plot(step, adapted_kl_components_hist[i][j], c=c) # # ax[i][0].set_title('N=' + str(i) + ' log(q(zn|x) / p(z)) ratio for Initial Factors') # ax[i][1].set_title('N=' + str(i) + ' log(q(zn|x) / p(z)) ratio for Adapted Factors') # # ax[i][0].legend(list(range(64))) # ax[i][0].set_ylabel('kl divergence') # # ax[4][0].set_xlabel('step') # ax[4][1].set_xlabel('step') # # ######### Visualize kl_zn history # _, ax_zn = plt.subplots(5, 2, sharex='col', sharey='row', figsize=(20, 20)) # # for i in range(5): # color = iter(cm.rainbow(np.linspace(0, 1, 5))) # c = next(color) # val = kl_zn_hist[i] # step = range(global_step_ev, global_step_ev+ len(val)) # ax_zn[i][0].plot(step, val, c=c) # ax_zn[i][1].plot(step, adapted_kl_zn_hist[i], c=c) # # ax_zn[i][0].set_title('N=' + str(i) + ' KL Divergence for Initial Zn for q(zn|x) and p(z)') # ax_zn[i][1].set_title('N=' + str(i) + ' KL Divergence for Adapted Zn for q(zn|x) and p(z)') # # ax_zn[4][0].set_xlabel('step') # ax_zn[4][1].set_xlabel('step') # # ########### Visualize kl divergence for batches # kl_hist.append(kl_ev.flatten()) # adapted_kl_hist.append(adapted_kl_ev.flatten()) # _, (ax1, ax2) = plt.subplots(1, 2, sharey=True) # ax1.plot(range(global_step_ev, global_step_ev+ len(kl_hist)), kl_hist) # ax1.set_title('KL Divergence for Initial q(z|x) and p(z)') # ########### Visualize adapted kl divergence for batches # ax2.plot(range(global_step_ev, global_step_ev+ len(adapted_kl_hist)), adapted_kl_hist) # ax2.set_title('KL Divergence for Adapted q(z|x) and p(z)') # # metavalid_accuracy_hist.append(metavalid_accuracy_ev) # _, metavalid_accuracy_plot = plt.subplots() # metavalid_accuracy_plot.plot(range(0, len(metavalid_accuracy_hist)), metavalid_accuracy_hist) # metavalid_accuracy_plot.set_title('Metavalidation Accuracy') # # # Visualize latent history, additionally examine the gradients for the latents _, ax_latent = plt.subplots(5, sharex='col', figsize=(20, 20)) for i in range(5): color = iter(cm.rainbow(np.linspace(0, 1, 64))) for j in range(64): c = next(color) step = range(0, len(latents_hist[i][j])) ax_latent[i].plot(step, latents_hist[i][j], c=c) ax_latent[i].set_title('class=' + str(i) + ' Change in Latents') ax_latent[4].set_xlabel('step') plt.show(); tf.logging.info("Step: {} meta-valid accuracy: {}".format( global_step_ev, metavalid_accuracy_ev)) if metavalid_accuracy_ev > best_metavalid_accuracy: utils.copy_checkpoint(checkpoint_path, global_step_ev, metavalid_accuracy_ev) best_metavalid_accuracy = metavalid_accuracy_ev _, global_step_ev, metatrain_accuracy_ev = sess.run( [train_op, global_step, metatrain_accuracy]) #runs the session for training if global_step_ev % (FLAGS.checkpoint_steps // 2) == 0: tf.logging.info("Step: {} meta-train accuracy: {}".format( global_step_ev, metatrain_accuracy_ev)) else: assert not FLAGS.checkpoint_steps num_metatest_estimates = ( 10000 // outer_model_config["metatest_batch_size"]) test_accuracy = utils.evaluate_and_average(sess, metatest_accuracy, num_metatest_estimates) #runs the session for testing tf.logging.info("Metatest accuracy: %f", test_accuracy) with tf.gfile.Open( os.path.join(checkpoint_path, "test_accuracy"), "wb") as f: pickle.dump(test_accuracy, f)
def run_training_loop(checkpoint_path): """Runs the training loop, either saving a checkpoint or evaluating it.""" outer_model_config = config.get_outer_model_config() tf.logging.info("outer_model_config: {}".format(outer_model_config)) (train_op, global_step, metatrain_accuracy, metavalid_accuracy, metatest_accuracy, metatrain_dacc, metavalid_dacc, metatest_dacc, hardness, correct) = construct_graph(outer_model_config) num_steps_limit = outer_model_config["num_steps_limit"] best_metavalid_accuracy = 0. best_metavalid_dacc = 0. with tf.train.MonitoredTrainingSession( checkpoint_dir=checkpoint_path, save_summaries_steps=FLAGS.checkpoint_steps, log_step_count_steps=FLAGS.checkpoint_steps, save_checkpoint_steps=FLAGS.checkpoint_steps, summary_dir=checkpoint_path) as sess: if not FLAGS.evaluation_mode: global_step_ev = sess.run(global_step) while global_step_ev < num_steps_limit: if global_step_ev % FLAGS.checkpoint_steps == 0: # Just after saving checkpoint, calculate accuracy 10 times and save # the best checkpoint for early stopping. #metavalid_accuracy_ev = utils.evaluate_and_average( #sess, metavalid_accuracy, 10) metavalid_accuracy_ev, metavalid_dacc_ev = utils.evaluate_and_average_acc_dacc( sess, metavalid_accuracy, metavalid_dacc, 10) tf.logging.info( "Step: {} meta-valid accuracy: {}, dacc: {} best acc: {} best dacc: {}" .format(global_step_ev, metavalid_accuracy_ev, metavalid_dacc_ev, best_metavalid_accuracy, best_metavalid_dacc)) if metavalid_accuracy_ev > best_metavalid_accuracy: utils.copy_checkpoint(checkpoint_path, global_step_ev, metavalid_accuracy_ev) best_metavalid_accuracy = metavalid_accuracy_ev if metavalid_dacc_ev > best_metavalid_dacc: best_metavalid_dacc = metavalid_dacc_ev _, global_step_ev, metatrain_accuracy_ev = sess.run( [train_op, global_step, metatrain_accuracy]) if global_step_ev % (FLAGS.checkpoint_steps // 2) == 0: tf.logging.info("Step: {} meta-train accuracy: {}".format( global_step_ev, metatrain_accuracy_ev)) else: if not FLAGS.hacc: assert not FLAGS.checkpoint_steps num_metatest_estimates = ( 2000 // outer_model_config["metatest_batch_size"]) # Not changed to dacc yet test_accuracy = utils.evaluate_and_average( sess, metatest_accuracy, num_metatest_estimates) tf.logging.info("Metatest accuracy: %f", test_accuracy) with tf.gfile.Open( os.path.join(checkpoint_path, "test_accuracy"), "wb") as f: pickle.dump(test_accuracy, f) else: all_hardness = [] all_correct = [] for i in range(2000): hardness_ev, correct_ev = sess.run([hardness, correct]) hardness_ev = [hardness_ev[i, :, i] for i in range(5)] hardness_ev = np.array(hardness_ev).flatten() correct_ev = np.array(correct_ev).flatten() all_hardness.append(hardness_ev) all_correct.append(correct_ev) all_hardness = np.array(all_hardness).flatten() all_correct = np.array(all_correct).flatten() save_file = {"hardness": all_hardness, "correct": all_correct} print(all_correct.sum() / len(all_correct)) pickle.dump(save_file, open("hacc/" + FLAGS.config, "wb"))