コード例 #1
0
def plot2d():
    xs = [random_normal() for _ in range(1000)]
    ys1 = [x + random_normal() / 2 for x in xs]
    ys2 = [-x + random_normal() / 2 for x in xs]
    
    print(correlation(xs, ys1))
    print(correlation(xs, ys2))
    
    plt.scatter(xs, ys1, marker='.', color='black', label='ys1')
    plt.scatter(xs, ys2, marker='.', color='gray', label='ys2')
    plt.xlabel('xs')
    plt.ylabel('ys')
    plt.legend(loc=9)
    plt.title('Very Different Joint Distributions')
    plt.show()
コード例 #2
0
def main():
    # compose data for xgboost
    train, train_target, val, val_target = load_dataset() # np arrays [X 2048] [X 15] (large X)
    # train = np.array([[1,2,3,4,5], [2,3,4,5,6], [4,5,6,7,8], [5,6,7,8,9]])
    # train_target = np.array([3,4,5,6])
    print(train.shape, train_target.shape, val[0].shape, val_target[0].shape)
    regressor = xgb.XGBRegressor(tree_method='gpu_hist', predictor='gpu_predictor')
    # 
    regressor.fit(train, train_target)
    score = regressor.score(train, train_target)
    print('Score:', score)
    # print(regressor.predict(np.array([[6,7,8,9,10]])))
    video_count = len(val)
    corr_mean = 0.0
    for i in range(video_count):
        preds = regressor.predict(val[i])
        preds = torch.from_numpy(preds).cuda()
        preds = torch.cat([preds, preds[-1:]])
        preds = preds.unsqueeze(1) # T -> T 1
        preds = interpolate_output(preds, 1 , 6)
        pred_len = val_target[i].shape[0]
        preds = preds[:pred_len]
        val_ti = torch.from_numpy(val_target[i]).cuda()
        val_ti = val_ti.unsqueeze(1) # T -> T 1
        corr, _ = correlation(preds, val_ti)
        corr_mean += corr.item()
    print('Correlation:', corr_mean/video_count)
コード例 #3
0
def test_result(filt_emp):
    global best_conf
    # do a correlation evalutation
    filt_emp = np.concatenate((filt_emp, filt_emp[-1:]))
    output = interpolate_output(torch.from_numpy(filt_emp), 1, 6)
    cor, _ = correlation(output[:vid_labels.shape[0]],
                         torch.from_numpy(vid_labels))
    print('Correlation:', cor.item())
    return cor.item()
コード例 #4
0
def _generate_complete_graph(D: spn.Dataset, S: spn.Scope):
    n = len(S)
    G = graph_tool.generation.complete_graph(n,
                                             self_loops=False,
                                             directed=False)
    W = G.new_edge_property('double')
    G.edge_properties['weights'] = W
    for e in G.edges():
        s = int(e.source())
        t = int(e.target())
        if e not in W:
            W[e] = utils.correlation(D, s, t)
    return G
コード例 #5
0
def _generate_sample_graph(D: spn.Dataset, S: spn.Scope, M: VertexMap,
                           sample_func):
    G = graph_tool.Graph(directed=False)
    W = G.new_edge_property('double')
    G.edge_properties['weights'] = W
    G.add_vertex(n=len(S))
    for v in S:
        N = sample_func(S, v)
        for u in N:
            s = M.g(v)
            t = M.g(u)
            if G.edge(s, t) is None:
                e = G.add_edge(s, t)
                W[e] = utils.correlation(D, s, t)
    return G
コード例 #6
0
    def selected_data_using_corr(self):
        # selected data using corr.

        df = self._des2cat(self.df, self.category_cols)

        X_data = df.drop(['price'], axis=1)
        y_data = np.log(df['price'])

        top_corr = correlation(df)
        X_data = X_data.loc[:, top_corr[1:]]

        # vis X_data
        self.max_X_data = np.max(X_data.max())
        vis_boxplot(X_data,
                    save_path='./selected_data_using_corr',
                    vmax=self.max_X_data)

        y_data = pd.DataFrame(y_data)

        return pd.concat((y_data, X_data), axis=1)
コード例 #7
0
 def extraFea(self, x):
     output = []
     input = x
     for x in input:
         result = []
         x = abs(x[3].cpu().numpy())
         result.append(utils.mean_abs_dev(x))
         result.append(utils.average(x))
         result.append(utils.fre_skewness(x))
         result.append(utils.fre_kurtosis(x))
         result.append(utils.energy(x))
         result.append(utils.entropy(x))
         #temp = utils.ar_coef(x)
         #for i in temp:
         #    result.append(i)
         x1 = x[0:int(len(x) / 2)]
         x2 = x[int(len(x) / 2):]
         result.append(utils.correlation(x1, x2))
         result.append(utils.fswa(x))
         output.append([result])
     return output
コード例 #8
0
def insight():
    scope = [
        'https://spreadsheets.google.com/feeds',
        'https://www.googleapis.com/auth/drive'
    ]
    creds = ServiceAccountCredentials.from_json_keyfile_name(
        'SIOTfinal.json', scope)
    client = gspread.authorize(creds)
    sound_g = client.open('sound').sheet1
    room_g = client.open('room').sheet1
    outside_g = client.open('outside').sheet1
    room_df = get_room_temp(room_g)
    out_df = get_outside_temp(outside_g)
    sound_df = get_sound(sound_g)

    intervals = ["15min", "30min", "1h", "4h"]
    dates = []
    dates_obj = []
    all_date = sound_df.resample('D').sum()
    for i in range(len(all_date.index)):
        dates.append(str(all_date.index[i].strftime('%Y-%m-%d')))
        dates_obj.append(all_date.index[i])
    dates = dates[1:]
    dates_obj = dates_obj[1:]
    variables = [
        'room temperature', 'room humidity', 'local temperature',
        'local humidity', 'atmospheric pressure', 'wind speed', 'cloud'
    ]
    room_variables = ['room temperature', 'room humidity']
    out_variables = [
        'local temperature', 'local humidity', 'atmospheric pressure',
        'wind speed', 'cloud'
    ]

    current_date = request.args.get("dates")
    current_interval = request.args.get("intervals")
    current_variable = request.args.get("variables")

    if current_interval == None:
        current_interval = "15min"
    if current_date == None:
        current_date = str(datetime.today().strftime('%Y-%m-%d'))
    if current_variable == None:
        current_variable = 'room temperature'

    date = current_date[8:10] + current_date[5:7] + current_date[0:4]

    sound_date = time_select(sound_df, date)
    room_date = time_select(room_df, date)
    out_date = time_select(out_df, date)

    if current_variable in room_variables:
        col = room_date[current_variable]
    elif current_variable in out_variables:
        col = out_date[current_variable]

    relation_plot = sound_line(sound_date['Trigger bool'], col,
                               current_interval)
    correlation_plot = correlation(dates_obj, sound_df, room_df, out_df)

    s1, div1 = components(relation_plot)
    s2, div2 = components(correlation_plot)

    return render_template('insight.html',
                           title="Insight",
                           s1=s1,
                           div1=div1,
                           s2=s2,
                           div2=div2,
                           intervals=intervals,
                           current_variable=current_variable,
                           variables=variables,
                           current_interval=current_interval,
                           dates=dates,
                           current_date=current_date)
コード例 #9
0
def _generate_complete_network(D: spn.Dataset, S: spn.Scope):
    G = nx.complete_graph(S)
    for i, u in enumerate(S):
        for j, v in enumerate(S[i + 1:]):
            G.add_edge(u, v, weight=utils.correlation(D, i, j + i + 1))
    return G
コード例 #10
0
    def future_policy_value(self,
                            x,
                            a,
                            trans,
                            seq_len,
                            seq_mask,
                            agent,
                            opt,
                            create_summary=False):
        """
        Computes the value of a policy according to the critic when updated using the objective function
        :param x: observations
        :param a: actions
        :param trans: entire tuple of transition (s_t, a_t, r_t, d_t, s_{t+1})
        :param seq_len: Length of trajectories
        :param seq_mask: Binary mask of trajectories
        :param agent: agent to compute value for
        :param opt: optimizer to use for the policy update
        :param create_summary: whether to create summary ops
        :return: tensor of batched future policy value
        """
        with tf.variable_scope('future_policy_value'):
            policy = agent.main.policy
            policy_vars = policy.trainable_variables
            # The replace manager can replace the policy variables with updated variables
            replace_manager = policy.variable_scope.custom_getter

            use_adam = self.dconfig.obj_func_second_order_adam
            step_size = self.dconfig.obj_func_second_order_stepsize
            step_count = self.dconfig.obj_func_second_order_steps + 1
            batch_size = self.dconfig.buffer_sample_size

            # Split tensors according to number of inner gradient descent steps
            x_s = tf.split(x, step_count, axis=0)
            a_s = tf.split(a, step_count, axis=0)
            if seq_len is not None:
                seq_len_s = tf.split(seq_len, step_count, axis=0)
                seq_mask_s = tf.split(seq_mask, step_count, axis=0)
            else:
                seq_len_s = utils.ConstArray()
                seq_mask_s = utils.ConstArray(seq_mask)
            trans_s = list(
                zip(*(tf.split(e, step_count, axis=0) for e in trans)))

            objective_val = None
            policy_grads = None
            opt_args_dict = {}
            current_vars = policy_vars
            var_names = [var.op.name for var in policy_vars]
            for i in range(step_count - 1):
                # Run policy
                policy_result = policy(x_s[i], seq_len=seq_len_s[i])
                # Run objective
                objective_val = self.objective(x_s[i], a_s[i], trans_s[i],
                                               seq_len_s[i], seq_mask_s[i],
                                               agent, policy_result,
                                               create_summary)
                # Compute policy gradients
                policy_grads = tf.gradients(objective_val * seq_mask_s[i],
                                            current_vars)

                if use_adam:

                    def grad_transform(grad, var, var_name):
                        if var_name in opt_args_dict:
                            opt_args = opt_args_dict[var_name]
                        else:
                            opt_args = []
                        new_grad, *opt_args = opt.adapt_gradients(grad,
                                                                  var,
                                                                  *opt_args,
                                                                  lr=step_size)
                        opt_args_dict[var_name] = opt_args
                        return new_grad
                else:

                    def grad_transform(grad, *args):
                        return step_size * grad

                # Use adam or vanilla SGD for inner gradient step
                transformed_grads = [
                    grad_transform(grad, var,
                                   var_name) for grad, var, var_name in zip(
                                       policy_grads, current_vars, var_names)
                ]

                one_step_updated_policy_vars = [
                    var - grad
                    for var, grad in zip(current_vars, transformed_grads)
                ]
                one_step_updated_policy_vars_dict = OrderedDict(
                    zip(var_names, one_step_updated_policy_vars))

                #               # Updates replace manager to run policy with updated variables in the next loop iteration
                replace_manager.replace_dict = one_step_updated_policy_vars_dict
                current_vars = one_step_updated_policy_vars

            # Run policy with final parameters
            future_policy = policy(x, seq_len=seq_len)
            replace_manager.replace_dict = None
            # Estimate the final policy value
            future_policy_value = agent.main.critic(
                x, future_policy.action) * seq_mask

            if create_summary:
                orig_policy = policy(x_s[-1], seq_len=seq_len_s[-1])
                partial_future_policy_value = future_policy_value[-batch_size:]
                tf.summary.histogram('objective_value', objective_val)
                tf.summary.histogram('policy_grads', utils.flat(policy_grads))
                tf.summary.histogram('policy_value', orig_policy.value)
                tf.summary.histogram('future_policy_value',
                                     partial_future_policy_value)
                tf.summary.histogram(
                    'policy_value_gain',
                    partial_future_policy_value - orig_policy.value)

                sample_axis = [
                    0, 1
                ] if self.dconfig.recurrent_time_steps > 1 else 0
                cor = utils.correlation(-orig_policy.value, objective_val,
                                        sample_axis)
                tf.summary.scalar('objective_critic_correlation',
                                  tf.squeeze(cor))

                grad, = tf.gradients(objective_val, policy_result.value)
                if grad is not None:
                    tf.summary.histogram('objective_critic_grads', grad)

        return future_policy_value
コード例 #11
0
ファイル: evaluate.py プロジェクト: palikar/flow_predict
    def recusive_application_performance(self,
                                         net,
                                         dataset,
                                         split_point,
                                         samples=20):
        print('===> Evaluating performance of recursive application')

        path = os.path.join(config['output_dir'], self.output_name,
                            'recursive')
        mkdir(path)

        if split_point - samples / 2 < 0:
            start_index = 0
            end_index = int(split_point + samples)
        else:
            start_index = int(split_point - samples / 2)
            end_index = int(split_point + samples / 2)

        print('-- Start index:', start_index)
        print('-- End index:', end_index)

        mse = []
        cor = []
        psnr = []
        ssim = []
        diff_avrg = []
        diff_max = []
        diff_x = []
        diff_y = []

        change_psnr_x = []
        change_psnr_y = []
        change_diff_x = []
        change_diff_y = []

        input_img = dataset[start_index][0].expand(1, -1, -1,
                                                   -1).to(self.device)

        if self.parameterized:
            params = dataset[start_index][2].expand(1, -1, -1,
                                                    -1).to(self.device)

        for index in range(start_index, end_index):

            pred_input = self._prepare_tensor_img(input_img[0].clone(),
                                                  is_input=True)

            if self.parameterized:
                predicted = net((input_img, params))
            else:
                predicted = net(input_img)

            target = dataset[index][1].expand(1, -1, -1, -1).to(self.device)

            if self.args.mask:
                for i, j in itertools.product(range(predicted.shape[0]),
                                              range(predicted.shape[1])):
                    predicted[i][j] = self.MASK * predicted[i][j]

                    input_img = torch.cat((torch.tensor(
                        predicted.clone().detach()[0][0:3]).expand(
                            1, -1, -1, -1), self.MASK.expand(1, -1, -1, -1)),
                                          1)
            else:
                input_img = predicted.clone().detach()

            cur_mse = self.criterionMSE(predicted, target).item()

            if not self.args.use_pressure:
                predicted_x, predicted_y = self._prepare_tensor_img(
                    predicted[0])
                target_x, target_y = self._prepare_tensor_img(
                    dataset[index][1])
            else:
                predicted_x, predicted_y, predicted_p = self._prepare_tensor_img(
                    predicted[0])
                target_x, target_y, target_p = self._prepare_tensor_img(
                    dataset[index][1])

            merge_and_save(
                target_x, predicted_x, 'Real', 'Predicted',
                os.path.join(path,
                             'x_recursive_{}.png'.format(index - start_index)))

            merge_and_save(
                target_y, predicted_y, 'Real', 'Predicted',
                os.path.join(path,
                             'y_recursive_{}.png'.format(index - start_index)))

            predicted_img = self.denormalize_output(
                predicted).detach().cpu().numpy()
            target_img = self.denormalize_input(target).detach().cpu().numpy()

            mse += [cur_mse]
            psnr += [10 * math.log10(1 / cur_mse)]
            cor += [
                np.average(
                    np.array([
                        correlation(predicted_img[i], target_img[i])
                        for i in range(predicted_img.shape[0])
                    ]))
            ]
            ssim += [
                np.average(
                    np.array([
                        ssim_metr(predicted_img[i].T,
                                  target_img[i].T,
                                  multichannel=True)
                        for i in range(predicted_img.shape[0])
                    ]))
            ]

            diff_avrg_, _, diff_max_ = imgs_perc_diff(target_img,
                                                      predicted_img)
            diff_avrg.append(diff_avrg_)
            diff_max.append(diff_max_)

            diff_x.append(
                imgs_perc_diff(target_img[0][0], predicted_img[0][0])[0])
            diff_y.append(
                imgs_perc_diff(target_img[0][1], predicted_img[0][1])[0])

            real_input = self._prepare_tensor_img(dataset[index][0], True)

            change_x_real = np.abs(target_x - real_input[0])
            change_x_predicted = np.abs(pred_input[0] - predicted_x)
            change_y_real = np.abs(target_y - real_input[1])
            change_y_predicted = np.abs(pred_input[1] - predicted_y)

            change_mse_x = (np.square(change_x_real -
                                      change_x_predicted)).mean(axis=None)
            change_mse_y = (np.square(change_y_real -
                                      change_y_predicted)).mean(axis=None)

            change_psnr_x += [10.0 * np.log10(255.0 / np.sqrt(change_mse_x))]
            change_psnr_y += [10.0 * np.log10(255.0 / np.sqrt(change_mse_y))]
            change_diff_x += [
                imgs_perc_diff(change_x_real, change_x_predicted)[0]
            ]
            change_diff_y += [
                imgs_perc_diff(change_y_real, change_y_predicted)[0]
            ]

            merge_and_save(
                change_x_real, change_x_predicted, 'Real', 'Predicted',
                os.path.join(path,
                             'x_diff_{}.png'.format(index - start_index)))

            merge_and_save(
                change_y_real, change_y_predicted, 'Real', 'Predicted',
                os.path.join(path,
                             'y_diff_{}.png'.format(index - start_index)))

            print('> Recursive application {} completed'.format(index -
                                                                start_index))

        with open(
                os.path.join(self.root_dir, self.output_name,
                             'recursive_application.txt'), 'w') as list_hand:
            list_hand.write('Split index: {}\n'.format(str(samples / 2)))
            list_hand.write('{} {}\n'.format('mse: ',
                                             ','.join(str(i) for i in mse)))
            list_hand.write('{} {}\n'.format('cor: ',
                                             ','.join(str(i) for i in cor)))
            list_hand.write('{} {}\n'.format('psnr: ',
                                             ','.join(str(i) for i in psnr)))
            list_hand.write('{} {}\n'.format('ssim: ',
                                             ','.join(str(i) for i in ssim)))
            list_hand.write('{} {}\n'.format(
                'diff_avrg: ', ','.join(str(i) for i in diff_avrg)))
            list_hand.write('{} {}\n'.format(
                'diff_max: ', ','.join(str(i) for i in diff_max)))
            list_hand.write('{} {}\n'.format('x_diff_avrg: ',
                                             ','.join(str(i) for i in diff_x)))
            list_hand.write('{} {}\n'.format('y_diff_max: ',
                                             ','.join(str(i) for i in diff_y)))

            list_hand.write('{} {}\n'.format(
                'change_psnr_x: ', ','.join(str(i) for i in change_psnr_x)))
            list_hand.write('{} {}\n'.format(
                'change_psnr_y: ', ','.join(str(i) for i in change_psnr_y)))
            list_hand.write('{} {}\n'.format(
                'change_diff_x: ', ','.join(str(i) for i in change_diff_x)))
            list_hand.write('{} {}\n'.format(
                'change_diff_y: ', ','.join(str(i) for i in change_diff_y)))
コード例 #12
0
ファイル: evaluate.py プロジェクト: palikar/flow_predict
    def individual_images_performance(self, net, test_dataloader):
        print('===> Evaluating performance on individual images')

        mse = []
        cor = []
        psnr = []
        ssim = []
        diff_avrg = []
        diff_max = []
        diff_x = []
        diff_y = []

        change_mse_x = []
        change_mse_y = []
        change_psnr_x = []
        change_psnr_y = []
        change_diff_x = []
        change_diff_y = []
        change_psnr = []

        for iteration, batch in enumerate(test_dataloader, 1):
            real_a, real_b = batch[0].to(self.device), batch[1].to(self.device)

            if self.parameterized:
                params = batch[2].to(self.device)
                predicted = net((real_a, params))
            else:
                predicted = net(real_a)

            if self.args.mask:
                for i, j in itertools.product(range(predicted.shape[0]),
                                              range(predicted.shape[1])):
                    predicted[i][j] = self.MASK * predicted[i][j]

            cur_mse = self.criterionMSE(predicted, real_b).item()

            predicted = self.denormalize_output(
                predicted).detach().cpu().numpy()
            real_a = self.denormalize_output(real_a).detach().cpu().numpy()
            real_b = self.denormalize_output(real_b).detach().cpu().numpy()

            mse += [cur_mse]
            psnr += [10 * math.log10(1 / cur_mse)]
            cor += [
                np.average(
                    np.array([
                        correlation(predicted[i], real_b[i])
                        for i in range(predicted.shape[0])
                    ]))
            ]
            ssim += [
                np.average(
                    np.array([
                        ssim_metr(predicted[i].T,
                                  real_b[i].T,
                                  multichannel=True)
                        for i in range(predicted.shape[0])
                    ]))
            ]

            diff_avrg_, _, diff_max_ = imgs_perc_diff(real_b, predicted)
            diff_avrg.append(diff_avrg_)
            diff_max.append(diff_max_)

            for i in range(predicted.shape[0]):
                diff_x.append(imgs_perc_diff(real_b[i][0], predicted[i][0])[0])
                diff_y.append(imgs_perc_diff(real_b[i][1], predicted[i][1])[0])

            # error images

            batch_change_mse = []
            batch_change_mse_x = []
            batch_change_mse_y = []
            batch_change_psnr_x = []
            batch_change_psnr_y = []
            batch_change_diff_x = []
            batch_change_diff_y = []

            for ind in range(real_a.shape[0]):

                if self.args.use_pressure:
                    real_change_img = np.abs(real_a[ind][0:3] - real_b[ind])
                else:
                    real_change_img = np.abs(real_a[ind][0:2] - real_b[ind])

                predicted_change_img = np.abs(predicted[ind] - real_b[ind])
                cur_mse = (np.square(real_change_img -
                                     predicted_change_img)).mean(axis=None)
                cur_psnr = 10 * np.log10(255.0 / np.sqrt(cur_mse))
                batch_change_mse.append(cur_psnr)

                real_change_img_x = np.abs(real_a[ind][0] - real_b[ind][0])
                predicted_change_img_x = np.abs(predicted[ind][0] -
                                                real_b[ind][0])

                real_change_img_y = np.abs(real_a[ind][1] - real_b[ind][1])
                predicted_change_img_y = np.abs(predicted[ind][1] -
                                                real_b[ind][1])

                x_cur_mse = (np.square(real_change_img_x -
                                       predicted_change_img_x)).mean(axis=None)
                y_cur_mse = (np.square(real_change_img_y -
                                       predicted_change_img_y)).mean(axis=None)
                x_cur_psnr = 10 * np.log10(255.0 / np.sqrt(x_cur_mse))
                y_cur_psnr = 10 * np.log10(255.0 / np.sqrt(y_cur_mse))
                cur_diff_x, _, _ = imgs_perc_diff(real_change_img_x,
                                                  predicted_change_img_x)
                cur_diff_y, _, __ = imgs_perc_diff(real_change_img_y,
                                                   predicted_change_img_y)

                batch_change_mse_x.append(x_cur_mse)
                batch_change_mse_y.append(y_cur_mse)
                batch_change_psnr_x.append(x_cur_psnr)
                batch_change_psnr_y.append(y_cur_psnr)
                batch_change_diff_x.append(cur_diff_x)
                batch_change_diff_y.append(cur_diff_y)

            change_psnr.append(np.array(batch_change_mse).mean())
            change_mse_x.append(np.array(batch_change_mse_x).mean())
            change_mse_y.append(np.array(batch_change_mse_y).mean())
            change_psnr_x.append(np.array(batch_change_psnr_x).mean())
            change_psnr_y.append(np.array(batch_change_psnr_y).mean())
            change_diff_x.append(np.array(batch_change_diff_x).mean())
            change_diff_y.append(np.array(batch_change_diff_y).mean())

            if iteration % 10 == 0:
                print('> Evaluation {} completed'.format(iteration))

        mse = np.array(mse)
        cor = np.array(cor)
        psnr = np.array(psnr)
        ssim = np.array(ssim)
        diff_avrg = np.array(diff_avrg)
        diff_max = np.array(diff_max)

        change_mse_x = np.array(change_mse_x)
        change_mse_y = np.array(change_mse_y)
        change_psnr_x = np.array(change_psnr_x)
        change_psnr_y = np.array(change_psnr_y)
        change_diff_x = np.array(change_diff_x)
        change_diff_y = np.array(change_diff_y)

        with open(
                os.path.join(self.root_dir, self.output_name,
                             'metrics_avrg.txt'), 'w') as avrg_hand:
            avrg_hand.write('{} {}\n'.format('Avrg mse: ', np.average(mse)))
            avrg_hand.write('{} {}\n'.format('Avrg cor: ', np.average(cor)))
            avrg_hand.write('{} {}\n'.format('Avrg psnr: ', np.average(psnr)))
            avrg_hand.write('{} {}\n'.format('Avrg ssim: ', np.average(ssim)))
            avrg_hand.write('{} {}\n'.format('Avrg avrg_diff_perc: ',
                                             np.average(diff_avrg)))
            avrg_hand.write('{} {}\n'.format('Avrg max_diff_perc: ',
                                             np.average(diff_max)))
            avrg_hand.write('{} {}\n'.format('Avrg avrt_diff_x: ',
                                             np.average(diff_x)))
            avrg_hand.write('{} {}\n'.format('Avrg avrt_diff_y: ',
                                             np.average(diff_y)))

            avrg_hand.write('{} {}\n'.format('Var mse: ', np.var(mse)))
            avrg_hand.write('{} {}\n'.format('Var cor: ', np.var(cor)))
            avrg_hand.write('{} {}\n'.format('Var psnr: ', np.var(psnr)))
            avrg_hand.write('{} {}\n'.format('Var ssim: ', np.var(ssim)))
            avrg_hand.write('{} {}\n'.format('Var avrg_diff_perc: ',
                                             np.var(diff_avrg)))
            avrg_hand.write('{} {}\n'.format('Var max_diff_perc: ',
                                             np.var(diff_max)))
            avrg_hand.write('{} {}\n'.format('Var avrt_diff_x: ',
                                             np.var(diff_x)))
            avrg_hand.write('{} {}\n'.format('Var avrt_diff_y: ',
                                             np.var(diff_y)))

            avrg_hand.write('{} {}\n'.format('avrg_Change_mse_x: ',
                                             np.mean(change_psnr)))
            avrg_hand.write('{} {}\n'.format('avrg_Change_mse_x: ',
                                             np.mean(change_mse_x)))
            avrg_hand.write('{} {}\n'.format('avrg_Change_mse_y: ',
                                             np.mean(change_mse_y)))
            avrg_hand.write('{} {}\n'.format('avrg_Change_psnr_x: ',
                                             np.mean(change_psnr_x)))
            avrg_hand.write('{} {}\n'.format('avrg_Change_psnr_y: ',
                                             np.mean(change_psnr_y)))
            avrg_hand.write('{} {}\n'.format('avrg_Change_diff_x: ',
                                             np.mean(change_diff_x)))
            avrg_hand.write('{} {}\n'.format('avrg_Change_diff_y: ',
                                             np.mean(change_diff_y)))

        with open(
                os.path.join(self.root_dir, self.output_name,
                             'metrics_list.txt'), 'w') as list_hand:
            list_hand.write('{} {}\n'.format('mse: ',
                                             ','.join(str(i) for i in mse)))
            list_hand.write('{} {}\n'.format('cor: ',
                                             ','.join(str(i) for i in cor)))
            list_hand.write('{} {}\n'.format('psnr: ',
                                             ','.join(str(i) for i in psnr)))
            list_hand.write('{} {}\n'.format('ssim: ',
                                             ','.join(str(i) for i in ssim)))
            list_hand.write('{} {}\n'.format(
                'diff_avrg: ', ','.join(str(i) for i in diff_avrg)))
            list_hand.write('{} {}\n'.format(
                'diff_max: ', ','.join(str(i) for i in diff_max)))
コード例 #13
0
import json

data = json.loads(open("titles.json").read())

counts = [x["count"] for x in data]
lengths = [len(x["title"]) for x in data]
words = [x["title"].count(" ") for x in data]
word_lengths = [len(x["title"])/x["title"].count(" ") for x in data]
colons = [1 if ":" in x["title"] else 0 for x in data]

with_colon = 0
with_num = 0
wo_colon = 0
wo_num = 0

for entry in data:
    if ":" in entry["title"]:
        with_colon += entry["count"]
        with_num += 1
    else:
        wo_colon += entry["count"]
        wo_num += 1

print "Correlation between length and count:", correlation(lengths, counts)
print "Correlation between num words and count:", correlation(words, counts)
print "Correlation between avg word length and count:", correlation(word_lengths, counts)
print "Correlation between colon and count:", correlation(colons, counts)

print "Avg count with colon:", with_colon / with_num
print "Avg count without colon:", wo_colon / wo_num
コード例 #14
0
 def matrix_entry(i, j):
     return correlation(data[:,i], data[:,j])
コード例 #15
0
ファイル: main_deepce.py プロジェクト: stjordanis/DeepCE
                pert_idose = ft['pert_idose']
            else:
                pert_idose = None
            predict = model(drug, data.gene, mask, pert_type, cell_id,
                            pert_idose)
            loss = model.loss(lb, predict)
            epoch_loss += loss.item()
            lb_np = np.concatenate((lb_np, lb.cpu().numpy()), axis=0)
            predict_np = np.concatenate((predict_np, predict.cpu().numpy()),
                                        axis=0)
        print('Dev loss:')
        print(epoch_loss / (i + 1))
        rmse_score = rmse(lb_np, predict_np)
        rmse_list_dev.append(rmse_score)
        print('RMSE: %.4f' % rmse_score)
        pearson, _ = correlation(lb_np, predict_np, 'pearson')
        pearson_list_dev.append(pearson)
        print('Pearson\'s correlation: %.4f' % pearson)
        spearman, _ = correlation(lb_np, predict_np, 'spearman')
        spearman_list_dev.append(spearman)
        print('Spearman\'s correlation: %.4f' % spearman)
        precision = []
        for k in precision_degree:
            precision_neg, precision_pos = precision_k(lb_np, predict_np, k)
            print("Precision@%d Positive: %.4f" % (k, precision_pos))
            print("Precision@%d Negative: %.4f" % (k, precision_neg))
            precision.append([precision_pos, precision_neg])
        precisionk_list_dev.append(precision)

        if best_dev_pearson < pearson:
            best_dev_pearson = pearson