コード例 #1
0
def non_interactive_demo(model, args):
    renderer = create_renderer()
    show_window = not args.no_show
    for rec in tqdm(model.images_list):
        log.info("Starting inference for %s", rec['img_name'])
        image = rec['img']
        distribution, targets = model.infer_sync(image)
        prob = calculate_probability(distribution)
        log.info("Confidence score is %s", prob)
        if prob >= args.conf_thresh ** len(distribution):
            phrase = model.vocab.construct_phrase(targets)
            if args.output_file:
                with open(args.output_file, 'a') as output_file:
                    output_file.write(rec['img_name'] + '\t' + phrase + '\n')
            else:
                print("\n\tImage name: {}\n\tFormula: {}\n".format(rec['img_name'], phrase))
                if renderer is not None:
                    rendered_formula, _ = renderer.render(phrase)
                    if rendered_formula is not None and show_window:
                        cv.imshow("Predicted formula", rendered_formula)
                        cv.waitKey(0)
        else:
            log.info("Confidence score is low. The formula was not recognized.")
    if args.perf_counts:
        log.info("Encoder performance statistics")
        print_stats(model.exec_net_encoder)
        log.info("Decoder performance statistics")
        print_stats(model.exec_net_decoder)
コード例 #2
0
 def __init__(self, input_model_shape, resolution):
     self.resolution = resolution
     self._tgt_shape = input_model_shape
     self.start_point, self.end_point = self._create_input_window()
     self._prev_rendered_formula = None
     self._prev_formula_img = None
     self._latex_h = 0
     self._renderer = create_renderer()
コード例 #3
0
def non_interactive_demo(model, args):
    renderer = create_renderer()
    show_window = not args.no_show
    for rec in tqdm(model.images_list):
        image = rec.img
        distribution, targets = model.infer_sync(image)
        prob = calculate_probability(distribution)
        log.info("Confidence score is {}".format(prob))
        if prob >= args.conf_thresh**len(distribution):
            phrase = model.vocab.construct_phrase(targets)
            if args.output_file:
                with open(args.output_file, 'a') as output_file:
                    output_file.write(rec.img_name + '\t' + phrase + '\n')
            else:
                print("\n\tImage name: {}\n\tFormula: {}\n".format(
                    rec.img_name, phrase))
                if renderer is not None:
                    rendered_formula, _ = renderer.render(phrase)
                    if rendered_formula is not None and show_window:
                        cv.imshow("Predicted formula", rendered_formula)
                        cv.waitKey(0)
        else:
            log.info(
                "Confidence score is low. The formula was not recognized.")