コード例 #1
0
ファイル: get_planet.py プロジェクト: jeanbastin/tsd
def download_crop(outfile, asset, aoi, aoi_type):
    """
    Download a crop defined in geographic coordinates using gdal or rasterio.

    Args:
        outfile (string): path to the output file
        asset (dict): dictionary containing the image information
        aoi (geojson.Polygon or 6-tuple): either a (lon, lat) polygon or a UTM
            rectangle (ulx, uly, lrx, lry, utm_zone, lat_band), where
            ulx, uly (floats): x/y UTM coordinates of the upper left (ul) corner
            lrx, lry (floats): x/y UTM coordinates of the lower right (lr) corner
            utm_zone (int): number between 1 and 60 indicating the UTM zone with
                respect to which the UTM coordinates have to be interpreted.
            lat_band (string): letter between C and X indicating the latitude band.
        aoi_type (string): "lonlat_polygon" or "utm_rectangle"
    """
    url = poll_activation(asset)
    if url is not None:
        if aoi_type == "utm_rectangle":
            utils.crop_with_gdal_translate(outfile, url, *aoi)
        elif aoi_type == "lonlat_polygon":
            with rasterio.open(url, 'r') as src:
                rpc_tags = src.tags(ns='RPC')
            crop, x, y = utils.crop_aoi(url, aoi)
            utils.rio_write(outfile,
                            crop,
                            tags={'CROP_OFFSET_XY': '{} {}'.format(x, y)},
                            namespace_tags={'RPC': rpc_tags})
コード例 #2
0
def sift_roi(file1, file2, aoi, z):
    """
    Args:
        file1, file2 (str): paths or urls to two GeoTIFF images
        aoi (geojson.Polygon): area of interest
        z (float): base altitude for the aoi

    Returns:
        two numpy arrays with the coordinates of the matching points in the
        original (full-size) image domains
    """
    # image crops
    crop1, x1, y1 = utils.crop_aoi(file1, aoi, z=z)
    crop2, x2, y2 = utils.crop_aoi(file2, aoi, z=z)

    # sift keypoint matches
    p1, p2 = match_pair(crop1, crop2)
    q1 = utils.points_apply_homography(utils.matrix_translation(x1, y1), p1)
    q2 = utils.points_apply_homography(utils.matrix_translation(x2, y2), p2)
    return q1, q2
コード例 #3
0
def sift_roi(file1, file2, aoi, z):
    """
    Args:
        file1, file2: filename of two satellite images
        aoi: area of interest
        z: base height for the aoi

    Returns:
        q1, q2: numpy arrays with the coordinates of the matching points in the
            original (full-size) image domains
    """
    # image crops
    crop1, x1, y1 = utils.crop_aoi(file1, aoi, z=z)
    crop2, x2, y2 = utils.crop_aoi(file2, aoi, z=z)

    # sift keypoint matches
    p1, p2 = match_pair(crop1, crop2)
    q1 = utils.points_apply_homography(matrix_translation(x1, y1), p1)
    q2 = utils.points_apply_homography(matrix_translation(x2, y2), p2)
    return q1, q2
コード例 #4
0
def trace_epipolar_curve(image1, image2, aoi, x0, y0):
    """auxiliary function to display in image2 the epipolar curve 
        corresponding to the point x0,y0 in the cropped image1"""

    import matplotlib.pyplot as plt

    # get the altitude of the center of the AOI
    lon, lat = aoi['center']
    z = srtm4.srtm4(lon, lat)

    # read the RPC coefficients of images i and j
    rpc1 = utils.rpc_from_geotiff(image1)
    rpc2 = utils.rpc_from_geotiff(image2)

    # crop the two images
    im1, x1, y1 = utils.crop_aoi(image1, aoi, z)
    im2, x2, y2 = utils.crop_aoi(image2, aoi, z)

    # translation matrices needed to compensate the crop offset
    H1 = matrix_translation(x1, y1)
    H2 = matrix_translation(x2, y2)

    # select a point in the first image
    #x0, y0 = 200, 200

    # compensate the crop offset of the first image
    x, y = np.dot(H1, [x0, y0, 1])[:2]

    # compute the epipolar curve
    epi = epipolar_curve(rpc1, rpc2, x, y)

    # compensate for the crop offset of the second image
    p = np.array([np.dot(np.linalg.inv(H2), [x, y, 1])[:2] for x, y in epi])

    # plot the epipolar curve on the second image
    f, ax = plt.subplots(1, 2, figsize=(13, 10))
    ax[0].plot(x0, y0, 'r+')
    ax[1].plot(p[:, 0], p[:, 1], 'r-')
    ax[0].imshow(np.sqrt(im1.squeeze()), cmap='gray')
    ax[1].imshow(np.sqrt(im2.squeeze()), cmap='gray')
コード例 #5
0
def crop_rectangular(image, aoi, base_h=0):
    a, _, _ = utils.crop_aoi(image, aoi, base_h)
    return a
コード例 #6
0
def crop_vertical(image, aoi, base_h=0):
    rpc = utils.rpc_from_geotiff(image)
    a, _, _ = utils.crop_aoi(image, aoi, base_h)
    R = build_verticalizing_rotation(rpc, a.shape)
    Ra = ndimage.affine_transform(a.T, np.linalg.inv(R)).T
    return Ra