コード例 #1
0
ファイル: test.py プロジェクト: waterbearbee/prdarts
def main():
    if not torch.cuda.is_available():
        logging.info('no gpu device available')
        sys.exit(1)

    np.random.seed(args.seed)
    torch.cuda.set_device(args.gpu)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled=True
    torch.cuda.manual_seed(args.seed)
    logging.info('gpu device = %d' % args.gpu)
    logging.info("args = %s", args)

    genotype = eval("genotypes.%s" % args.arch)
    model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
    model = model.cuda()
    utils.load(model, args.model_path)

    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()

    _, test_transform = utils.data_transforms_cifar10(args)
    test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

    test_queue = torch.utils.data.DataLoader(
            test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

    model.drop_path_prob = args.drop_path_prob
    test_acc, test_obj = infer(test_queue, model, criterion)
    logging.info('test_acc %f', test_acc)
コード例 #2
0
def parse_rev_args(receive_msg):
    """ parse reveive msgs to global variable
    """
    global trainloader
    global testloader
    global net
    global criterion
    global optimizer

    # Loading Data
    logger.debug("Preparing data..")

    transform_train, transform_test = utils.data_transforms_cifar10(args)

    trainset = torchvision.datasets.CIFAR10(root="./data",
                                            train=True,
                                            download=True,
                                            transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=args.batch_size,
                                              shuffle=True,
                                              num_workers=2)

    testset = torchvision.datasets.CIFAR10(root="./data",
                                           train=False,
                                           download=True,
                                           transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=2)

    # Model
    logger.debug("Building model..")
    net = build_graph_from_json(receive_msg)

    net = net.to(device)
    criterion = nn.CrossEntropyLoss()
    if device == "cuda" and torch.cuda.device_count() > 1:
        net = torch.nn.DataParallel(net)

    if args.optimizer == "SGD":
        optimizer = optim.SGD(net.parameters(),
                              lr=args.learning_rate,
                              momentum=0.9,
                              weight_decay=5e-4)
    if args.optimizer == "Adadelta":
        optimizer = optim.Adadelta(net.parameters(), lr=args.learning_rate)
    if args.optimizer == "Adagrad":
        optimizer = optim.Adagrad(net.parameters(), lr=args.learning_rate)
    if args.optimizer == "Adam":
        optimizer = optim.Adam(net.parameters(), lr=args.learning_rate)
    if args.optimizer == "Adamax":
        optimizer = optim.Adamax(net.parameters(), lr=args.learning_rate)
    if args.optimizer == "RMSprop":
        optimizer = optim.RMSprop(net.parameters(), lr=args.learning_rate)

    return 0
コード例 #3
0
 def build_validation_data_loader(self) -> DataLoader:
     _, valid_transform = data_transforms_cifar10()
     valid_data = dset.CIFAR10(root=self.data_dir,
                               train=False,
                               download=True,
                               transform=valid_transform)
     valid_queue = DataLoader(
         valid_data,
         batch_size=self.context.get_per_slot_batch_size(),
         shuffle=False,
         num_workers=2,
     )
     return valid_queue
コード例 #4
0
ファイル: test.py プロジェクト: Mendi23/Stochastic-NAS
def infer(model):

    test_data = dset.CIFAR10(
        root=TestConfig['data_path'],
        train=False,
        download=True,
        transform=data_transforms_cifar10(0, False),
    )

    if DEBUG:
        sampler = torch.utils.data.sampler.SubsetRandomSampler(list(
            range(256)))
        test_queue = torch.utils.data.DataLoader(
            test_data,
            sampler=sampler,
            batch_size=TestConfig['batch_size'],
            shuffle=False,
            pin_memory=True,
            num_workers=16,
        )

    else:
        test_queue = torch.utils.data.DataLoader(
            test_data,
            batch_size=TestConfig['batch_size'],
            shuffle=False,
            pin_memory=True,
            num_workers=16,
        )

    model.eval().cuda()
    acc_avg = AvgrageMeter('acc')
    for step, (X, y) in enumerate(test_queue):
        X = Variable(X, requires_grad=False).cuda()
        y = Variable(y, requires_grad=False).cuda(non_blocking=True)
        logits, _ = model(X, TestConfig['drop_path_prob'])
        pred = torch.argmax(logits, dim=1)
        acc = torch.sum(pred == y).float() / TestConfig['batch_size']
        acc_avg.update(acc)

        if step % TestConfig['log_freq'] is 0:
            print(f"test batch {step}: {acc_avg}")
    print(f"Final test: {acc_avg}")
コード例 #5
0
    def build_training_data_loader(self) -> DataLoader:
        """
        For bi-level NAS, we'll need each instance from the dataloader to have one image 
        for training shared-weights and another for updating architecture parameters.
        """
        train_transform, _ = data_transforms_cifar10()
        train_data = dset.CIFAR10(root=self.data_dir,
                                  train=True,
                                  download=True,
                                  transform=train_transform)
        bilevel_data = BilevelDataset(train_data)

        self.train_data = bilevel_data

        train_queue = DataLoader(
            bilevel_data,
            batch_size=self.context.get_per_slot_batch_size(),
            shuffle=True,
            num_workers=2,
        )
        return train_queue
コード例 #6
0
def get_data_iters(params):
    """
    Creates the train and validation data iterators by splitting the cifar-10 training set
    :param params:
    :return:
    """

    # Loading Data
    train_transform, valid_transform = data_transforms_cifar10(
        cutout=params["cutout"], cutout_length=16)
    dataset_train = datasets.CIFAR10("./datasets",
                                     train=True,
                                     download=True,
                                     transform=train_transform)
    dataset_valid = datasets.CIFAR10("./datasets",
                                     train=True,
                                     download=True,
                                     transform=valid_transform)

    # training set contains 40,000 images, validation and test set contain 10,000 images
    dataset_valid = Subset(
        dataset_valid, range(4 * len(dataset_train) // 5, len(dataset_train)))
    dataset_train = Subset(dataset_train, range(4 * len(dataset_train) // 5))

    # building cyclic iterators over the training and validation sets
    loader_train = torch.utils.data.DataLoader(dataset_train,
                                               batch_size=params["batch_size"],
                                               shuffle=True)
    loader_valid = torch.utils.data.DataLoader(dataset_valid,
                                               batch_size=params["batch_size"],
                                               shuffle=True)

    print("Length of datasets: Train: {}, Valid: {}".format(
        len(dataset_train), len(dataset_valid)))
    print("Length of loaders: Train: {}, Valid: {}".format(
        len(loader_train), len(loader_valid)))

    return loader_train, loader_valid
コード例 #7
0
ファイル: train_cifar.py プロジェクト: liyxi/AdaptNAS
def main():
    if not torch.cuda.is_available():
        logging.info('no gpu device available')
        sys.exit(1)

    np.random.seed(args.seed)
    torch.cuda.set_device(args.gpu)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled=True
    torch.cuda.manual_seed(args.seed)
    logging.info('gpu device = %d' % args.gpu)
    logging.info("args = %s", args)

    genotype = eval("genotypes.%s" % args.arch)
    model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
    model = model.to('cuda')

    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    criterion = nn.CrossEntropyLoss()
    criterion = criterion.to('cuda')

    # not apply weight decay to BN layers
    if args.bn_no_decay:
        logging.info('BN layers are excluded from weight decay')
        bn_params, other_params = utils.split_bn_params(model)
        logging.debug('bn: %s', [p.dtype for p in bn_params])
        logging.debug('other: %s', [p.dtype for p in other_params])
        param_group = [{'params': bn_params, 'weight_decay': 0},
                       {'params': other_params}]
    else:
        param_group = model.parameters()

    optimizer = torch.optim.SGD(
        param_group,
        args.learning_rate,
        momentum=args.momentum,
        weight_decay=args.weight_decay
    )
    logging.info('optimizer: %s', optimizer)

    train_transform, valid_transform = utils.data_transforms_cifar10(args)
    train_data = datasets.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = datasets.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.num_workers)

    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.num_workers)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))

    init_epoch = 0
    best_acc = 0

    if args.recover:
        states = torch.load(args.recover)
        model.load_state_dict(states['stete'])
        init_epoch = states['epoch'] + 1
        best_acc = states['best_acc']
        logging.info('checkpoint loaded')
        scheduler.step(init_epoch)
        logging.info('scheduler is set to epoch %d. learning rate is %s', init_epoch, scheduler.get_lr())

    for epoch in range(init_epoch, args.epochs):
        logging.info('epoch %d lr %s', epoch, scheduler.get_lr())
        model.drop_path_prob = args.drop_path_prob * epoch / args.epochs

        train_acc, train_obj = train(train_queue, model, criterion, optimizer)
        logging.info('train_acc %.4f', train_acc)

        with torch.no_grad():
            valid_acc, valid_obj = infer(valid_queue, model, criterion)
            logging.info('valid_acc %f', valid_acc)

        logging.info('epoch %03d overall train_acc=%.4f valid_acc=%.4f', epoch, train_acc, valid_acc)

        scheduler.step()

        # gpu info
        utils.gpu_usage(args.debug)

        if valid_acc > best_acc:
            best_acc = valid_acc

        logging.info('best acc: %.4f', best_acc)

        utils.save_checkpoint(state={'stete': model.state_dict(),
                                     'epoch': epoch,
                                     'best_acc': best_acc,},
                              is_best=False, save=args.save)
コード例 #8
0
def estimate(esargs):
    global best_acc
    global trainloader
    global testloader
    global net
    global criterion
    global optimizer
    global rank
    #重置早停对象
    early_stop = utils.EarlyStopping(mode="max")
    global best_acc
    best_acc = 0
    lr_explore = esargs['learning_rate']
    bs_explore = int(esargs['batch_size'])
    global trainloader
    transform_train, transform_test = utils.data_transforms_cifar10(args)
    trainset = torchvision.datasets.CIFAR10(root="/root/mountdir/data/",
                                            train=True,
                                            download=True,
                                            transform=transform_train)
    trainsampler = DistributedSampler(trainset)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=bs_explore,
                                              shuffle=False,
                                              num_workers=args.workers,
                                              pin_memory=False,
                                              sampler=trainsampler)

    op = optim.SGD(net.parameters(),
                   lr=lr_explore,
                   momentum=0.9,
                   weight_decay=5e-4)

    for ep in range(args.epochs):
        current_ep = ep + 1
        if rank == 0:
            if os.popen("grep epoch " + experiment_path + "/trials/" +
                        str(nni.get_trial_id()) + "/output.log").read():
                os.system("sed -i '/^epoch/cepoch=" + str(ep + 1) + "' " +
                          experiment_path + "/trials/" +
                          str(nni.get_trial_id()) + "/output.log")
            else:
                os.system("sed -i '$a\\epoch=" + str(ep + 1) + "' " +
                          experiment_path + "/trials/" +
                          str(nni.get_trial_id()) + "/output.log")
        try:
            train_acc = train(ep, op)
        except Exception as exception:
            f11 = open('/root/log', 'a+')
            f11.write('###### training is error \n')
            f11.write(str(exception) + "\n")
            f11.close()
            acclist.append(0)
            return 0, current_ep
        test_acc, best_acc = test(ep)
        logger.debug(test_acc)
        if early_stop.step(test_acc):
            break
    list = [best_acc, bs_explore, str(lr_explore)[0:7]]
    reslist.append(list)
    acclist.append(best_acc)
    return best_acc, current_ep
コード例 #9
0
def parse_rev_args(receive_msg):
    """ parse reveive msgs to global variable
    """
    global trainloader
    global testloader
    global trainsampler
    global testsampler
    global net
    global criterion
    global optimizer
    global rank, world_size

    # Loading Data
    if rank == 0:
        logger.debug("Preparing data..")

    transform_train, transform_test = utils.data_transforms_cifar10(args)

    dataPath = os.environ["HOME"] + "/mountdir/data/"
    trainset = torchvision.datasets.CIFAR10(root=dataPath,
                                            train=True,
                                            download=True,
                                            transform=transform_train)
    #
    # trainsampler = DistributedSampler(trainset)
    #
    # trainloader = torch.utils.data.DataLoader(
    #     trainset, batch_size=args.batch_size_per_gpu, shuffle=False, num_workers=args.workers,
    #     pin_memory=False, sampler=trainsampler
    # )

    testset = torchvision.datasets.CIFAR10(root=dataPath,
                                           train=False,
                                           download=True,
                                           transform=transform_test)

    testsampler = DistributedSampler(testset)

    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=0,
                                             pin_memory=False,
                                             sampler=testsampler)
    if rank == 0:
        print("len(trainset)=" + str(len(trainset)))
        print("len(testset)=" + str(len(testset)))

    # Model
    if rank == 0:
        logger.debug("Building model..")
    net = build_graph_from_json(receive_msg)

    net = net.to(device)
    net = DistModule(net)
    criterion = nn.CrossEntropyLoss()

    # if args.optimizer == "SGD":
    #     optimizer = optim.SGD(
    #         net.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=5e-4
    #     )
    # if args.optimizer == "Adadelta":
    #     optimizer = optim.Adadelta(net.parameters(), lr=args.learning_rate)
    # if args.optimizer == "Adagrad":
    #     optimizer = optim.Adagrad(net.parameters(), lr=args.learning_rate)
    # if args.optimizer == "Adam":
    #     optimizer = optim.Adam(net.parameters(), lr=args.learning_rate)
    # if args.optimizer == "Adamax":
    #     optimizer = optim.Adamax(net.parameters(), lr=args.learning_rate)
    # if args.optimizer == "RMSprop":
    #     optimizer = optim.RMSprop(net.parameters(), lr=args.learning_rate)

    cudnn.benchmark = True

    return 0
コード例 #10
0
ファイル: train.py プロジェクト: Mendi23/Stochastic-NAS
            ModelConfig['alphas_path']):
        logger.warning('cant find alpha in the specified path')
        sys.exit(1)

    alpha_normal, alpha_reduce = load_alphas(ModelConfig['alphas_path'])
    snas_cell = genotype(alpha_normal, alpha_reduce, ModelConfig['steps'],
                         ModelConfig['multiplier'])
    auxiliary = TrainerConfig['aux_weight'] is not None
    model = Network(ModelConfig['init_channels'], ModelConfig['classes'],
                    ModelConfig['layers'], auxiliary, snas_cell)

    train_data = dset.CIFAR10(
        root=DataConfig['data_path'],
        train=True,
        download=True,
        transform=data_transforms_cifar10(DataConfig['cutout_length'], True),
    )

    if DEBUG:
        sampler = torch.utils.data.sampler.SubsetRandomSampler(list(
            range(256)))
        train_queue = torch.utils.data.DataLoader(
            train_data,
            sampler=sampler,
            batch_size=DataConfig['batch_size'],
            shuffle=False,
            pin_memory=True,
            num_workers=16,
        )

    else:
コード例 #11
0
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU device available')
        sys.exit(1)

    np.random.seed(args.seed)
    torch.cuda.set_device(args.gpu)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    logging.info('GPU device = %d' % args.gpu)
    logging.info("args = %s", args)
    gpu_logger = GpuLogThread([args.gpu],
                              writer,
                              seconds=15 if not args.test else 1)
    gpu_logger.start()
    logging.debug(locals())
    model = None

    # prepare dataset
    if args.cifar100:
        train_transform, _ = utils.data_transforms_cifar100(args)
        train_data = dset.CIFAR100(root=args.tmp_data_dir,
                                   train=True,
                                   download=True,
                                   transform=train_transform)
    else:
        train_transform, _ = utils.data_transforms_cifar10(args)
        train_data = dset.CIFAR10(root=args.tmp_data_dir,
                                  train=True,
                                  download=True,
                                  transform=train_transform)

    num_train = len(train_data)
    indices = list(range(num_train))
    split = int(np.floor(args.train_portion * num_train))

    train_iterator = utils.DynamicBatchSizeLoader(
        torch.utils.data.DataLoader(
            train_data,
            batch_size=args.batch_multiples,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(
                indices[:split]),
            pin_memory=True,
            num_workers=args.workers), args.batch_size_min)

    valid_iterator = utils.DynamicBatchSizeLoader(
        torch.utils.data.DataLoader(
            train_data,
            batch_size=args.batch_multiples,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(
                indices[split:num_train]),
            pin_memory=True,
            num_workers=args.workers), args.batch_size_min)

    # build Network
    logging.debug('building network')
    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()

    num_graph_edges = sum(list(range(2, 2 + args.blocks)))
    switches_normal = SwitchManager(num_graph_edges, copy.deepcopy(PRIMITIVES),
                                    'normal')
    switches_reduce = SwitchManager(num_graph_edges, copy.deepcopy(PRIMITIVES),
                                    'reduce')

    total_epochs = 0
    for cycle in parse_cycles():
        logging.debug('new cycle %s' % repr(cycle))
        print('\n' * 3, '-' * 100)
        print(cycle)
        print('', '-' * 100, '\n')

        writer.add_scalar('cycle/net_layers', cycle.net_layers, cycle.num)
        writer.add_scalar('cycle/net_init_c', cycle.net_init_c, cycle.num)
        writer.add_scalar('cycle/net_dropout', cycle.net_dropout, cycle.num)
        writer.add_scalar('cycle/ops_keep', cycle.ops_keep, cycle.num)
        writer.add_scalar('cycle/epochs', cycle.epochs, cycle.num)
        writer.add_scalar('cycle/grace_epochs', cycle.grace_epochs, cycle.num)
        writer.add_scalar('cycle/morphs', cycle.morphs, cycle.num)
        switches_normal.plot_ops(logging.info, writer, cycle.num)
        switches_reduce.plot_ops(logging.info, writer, cycle.num)

        # rebuild the model in each cycle, clean up the cache...
        logging.debug('building model')
        del model
        torch.cuda.empty_cache()
        model = Network(cycle.net_init_c,
                        100 if args.cifar100 else 10,
                        cycle.net_layers,
                        criterion,
                        switches_normal=switches_normal,
                        switches_reduce=switches_reduce,
                        steps=args.blocks,
                        p=cycle.net_dropout)
        gpu_logger.reset_recent()
        if cycle.load:
            utils.load(model, model_path)
            if args.reset_alphas:
                model.reset_alphas()
        if args.test:
            model.randomize_alphas()
        if cycle.init_morphed:
            model.init_morphed(switches_normal, switches_reduce)
        model = model.cuda()
        logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

        logging.debug('building optimizers')
        optimizer = torch.optim.SGD(model.net_parameters,
                                    args.learning_rate,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        optimizer_a = torch.optim.Adam(model.arch_parameters,
                                       lr=args.arch_learning_rate,
                                       betas=(0.5, 0.999),
                                       weight_decay=args.arch_weight_decay)
        logging.debug('building scheduler')
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, int(cycle.epochs), eta_min=args.learning_rate_min)

        if args.batch_size_max > args.batch_size_min:
            train_iterator.set_batch_size(args.batch_size_min)
            valid_iterator.set_batch_size(args.batch_size_min)

        sm_dim = -1
        scale_factor = 0.2
        for epoch in range(cycle.epochs):
            lr = scheduler.get_lr()[0]
            logging.info('Epoch: %d lr: %e', epoch, lr)
            epoch_start = time.time()
            # training
            if epoch < cycle.grace_epochs:
                model.update_p(cycle.net_dropout * (cycle.epochs - epoch - 1) /
                               cycle.epochs)
            else:
                model.update_p(
                    cycle.net_dropout *
                    np.exp(-(epoch - cycle.grace_epochs) * scale_factor))
            train_acc, train_obj = train(
                train_iterator,
                valid_iterator,
                model,
                criterion,
                optimizer,
                optimizer_a,
                gpu_logger,
                train_arch=epoch >= cycle.grace_epochs)
            epoch_duration = time.time() - epoch_start

            # log info
            logging.info('Train_acc %f', train_acc)
            logging.info('Epoch time: %ds', epoch_duration)
            writer.add_scalar('train/accuracy', train_acc, total_epochs)
            writer.add_scalar('train/loss', train_obj, total_epochs)
            writer.add_scalar('epoch/lr', lr, total_epochs)
            writer.add_scalar('epoch/seconds', epoch_duration, total_epochs)
            writer.add_scalar('epoch/model.p', model.p, total_epochs)
            writer.add_scalar('epoch/batch_size', train_iterator.batch_size,
                              total_epochs)

            # validation, only for the last 5 epochs in a cycle
            if cycle.epochs - epoch < 5:
                valid_acc, valid_obj = infer(valid_iterator, model, criterion)
                logging.info('Valid_acc %f', valid_acc)
                writer.add_scalar('valid/accuracy', valid_acc, total_epochs)
                writer.add_scalar('valid/loss', valid_obj, total_epochs)

            total_epochs += 1
            gpu_logger.reset_recent()
            scheduler.step()

        utils.save(model, model_path)

        print('\n' * 2, '------Dropping/morphing paths------')
        # Save switches info for s-c refinement.
        if cycle.is_last:
            switches_normal_copy = switches_normal.copy()
            switches_reduce_copy = switches_reduce.copy()

        # drop operations with low architecture weights, add morphed ones
        arch_param = model.arch_parameters
        normal_prob = F.softmax(arch_param[0], dim=sm_dim).data.cpu().numpy()
        switches_normal.drop_and_morph(normal_prob,
                                       cycle.ops_keep,
                                       writer,
                                       cycle.num,
                                       num_morphs=cycle.morphs,
                                       no_zero=cycle.is_last
                                       and args.restrict_zero,
                                       keep_morphable=not cycle.is_last)
        reduce_prob = F.softmax(arch_param[1], dim=sm_dim).data.cpu().numpy()
        switches_reduce.drop_and_morph(reduce_prob,
                                       cycle.ops_keep,
                                       writer,
                                       cycle.num,
                                       num_morphs=cycle.morphs,
                                       no_zero=cycle.is_last
                                       and args.restrict_zero,
                                       keep_morphable=not cycle.is_last)
        logging.info('switches_normal = \n%s', switches_normal)
        logging.info('switches_reduce = \n%s', switches_reduce)

        # end last cycle with shortcut/zero pruning and save the genotype
        if cycle.is_last:
            arch_param = model.arch_parameters
            normal_prob = F.softmax(arch_param[0],
                                    dim=sm_dim).data.cpu().numpy()
            reduce_prob = F.softmax(arch_param[1],
                                    dim=sm_dim).data.cpu().numpy()
            normal_final = [0 for _ in range(num_graph_edges)]
            reduce_final = [0 for _ in range(num_graph_edges)]

            # Generate Architecture
            keep_normal = [0, 1]
            keep_reduce = [0, 1]
            n = 3
            start = 2
            for i in range(3):
                end = start + n
                tbsn = normal_final[start:end]
                tbsr = reduce_final[start:end]
                edge_n = sorted(range(n), key=lambda x: tbsn[x])
                keep_normal.append(edge_n[-1] + start)
                keep_normal.append(edge_n[-2] + start)
                edge_r = sorted(range(n), key=lambda x: tbsr[x])
                keep_reduce.append(edge_r[-1] + start)
                keep_reduce.append(edge_r[-2] + start)
                start = end
                n = n + 1
            for i in range(num_graph_edges):
                if i not in keep_normal:
                    for j in range(len(switches_normal.current_ops)):
                        switches_normal[i][j] = False
                if i not in keep_reduce:
                    for j in range(len(switches_reduce.current_ops)):
                        switches_reduce[i][j] = False

            switches_normal.keep_2_branches(normal_prob)
            switches_reduce.keep_2_branches(reduce_prob)
            switches_normal.plot_ops(logging.info, writer, cycle.num + 1)
            switches_reduce.plot_ops(logging.info, writer, cycle.num + 1)
            genotype = parse_network(switches_normal, switches_reduce)
            logging.info(genotype)
            save_genotype(args.save + 'genotype.json', genotype)
    gpu_logger.stop()
コード例 #12
0
def main():
    if not torch.cuda.is_available():
        logging.info('no gpu device available')
        sys.exit(1)

    torch.cuda.set_device(args.gpu)
    cudnn.benchmark = True
    cudnn.enabled = True
    logging.info('gpu device = %d' % args.gpu)
    logging.info("args = %s", args)

    genotype = eval("genotypes.%s" % args.arch)
    logging.info(genotype)

    dataset = params.datasets[args.dset_name]
    network_params = {
        'C': args.init_channels,
        'num_classes': dataset.num_classes,
        'layers': args.layers,
        'num_reductions': args.num_reductions,
        'reduction_location_mode': args.reduction_location_mode,
        'genotype': genotype,
        'stem_multiplier': dataset.num_channels,
        'do_SE': args.do_SE
    }
    model = Network(**network_params)

    logging.info("Loading model parameters from %s", args.model_path)
    utils.load(model, args.model_path)

    flops, num_params = None, None
    if args.calc_flops:
        from thop import profile, clever_format
        input = torch.randn(1, dataset.num_channels, dataset.hw[0],
                            dataset.hw[1])
        flops, num_params = profile(model, inputs=(input, ))
        flops, num_params = clever_format([flops, num_params], "%.2f")

    model = model.cuda()

    test_transform = data_transforms_cifar10()
    test_data = dset.CIFAR10(root=args.data,
                             train=False,
                             download=True,
                             transform=test_transform)

    test_queue = torch.utils.data.DataLoader(test_data,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=0)

    with torch.no_grad():
        test_acc, infer_time = infer(test_queue, model, args.report_freq)

    if args.calc_flops:
        logging.info(
            'Test Accuracy: %.2f%% | Number of parameters: %s | Inference time: %2.2fms | Flops: %s',
            test_acc, num_params, infer_time * 1000, flops)
    else:
        logging.info('Test Accuracy: %.2f%% | Inference time: %2.2fms',
                     test_acc, infer_time * 1000)
コード例 #13
0
ファイル: train_cifar.py プロジェクト: waterbearbee/prdarts
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU device available')
        sys.exit(1)
    np.random.seed(args.seed)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled=True
    torch.cuda.manual_seed(args.seed)
    logging.info("args = %s", args)
    logging.info("unparsed args = %s", unparsed)
    num_gpus = torch.cuda.device_count()
    gpu_logger = GpuLogThread(list(range(num_gpus)), writer, seconds=10 if args.test else 300)
    gpu_logger.start()

    genotype = genotypes.load_genotype(args.arch, skip_cons=args.arch_pref_sc)
    print('---------Genotype---------')
    logging.info(genotype)
    print('--------------------------')
    model = Network(args.init_channels, 100 if args.cifar100 else 10, args.layers, args.auxiliary, genotype)
    if num_gpus > 1:
        model = nn.DataParallel(model)
    model = model.cuda()
    logging.info("param count = %d", utils.count_parameters(model))
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()
    optimizer = torch.optim.SGD(model.parameters(), args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)

    if args.cifar100:
        train_transform, valid_transform = utils.data_transforms_cifar100(args)
    else:
        train_transform, valid_transform = utils.data_transforms_cifar10(args)
    if args.cifar100:
        train_data = dset.CIFAR100(root=args.tmp_data_dir, train=True, download=True, transform=train_transform)
        valid_data = dset.CIFAR100(root=args.tmp_data_dir, train=False, download=True, transform=valid_transform)
    else:
        train_data = dset.CIFAR10(root=args.tmp_data_dir, train=True, download=True, transform=train_transform)
        valid_data = dset.CIFAR10(root=args.tmp_data_dir, train=False, download=True, transform=valid_transform)

    train_iterator = utils.DynamicBatchSizeLoader(torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_multiples, shuffle=True, pin_memory=True, num_workers=args.workers),
        args.batch_size_min)
    test_iterator = utils.DynamicBatchSizeLoader(torch.utils.data.DataLoader(
        valid_data, batch_size=args.batch_multiples, shuffle=False, pin_memory=True, num_workers=args.workers),
        args.batch_size_min)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
    best_acc = 0.0
    for epoch in range(args.epochs):
        lr = scheduler.get_lr()[0]
        drop_path_prob = args.drop_path_prob * epoch / args.epochs
        logging.info('Epoch: %d lr %e', epoch, lr)
        if num_gpus > 1:
            model.module.drop_path_prob = drop_path_prob
        else:
            model.drop_path_prob = drop_path_prob
        epoch_start_time = time.time()
        train_acc, train_obj = train(train_iterator, test_iterator, model, criterion, optimizer, gpu_logger)
        logging.info('Train_acc: %f', train_acc)

        test_acc, test_obj = infer(test_iterator, model, criterion)
        if test_acc > best_acc:
            best_acc = test_acc
        logging.info('Valid_acc: %f', test_acc)
        epoch_duration = time.time() - epoch_start_time
        utils.save(model, os.path.join(args.save, 'weights.pt'))

        # log info
        print('Epoch time: %ds.' % epoch_duration)
        writer.add_scalar('epoch/lr', lr, epoch)
        writer.add_scalar('epoch/drop_path_prob', drop_path_prob, epoch)
        writer.add_scalar('epoch/seconds', epoch_duration, epoch)
        writer.add_scalar('epoch/batch_size', train_iterator.batch_size, epoch)
        writer.add_scalar('train/accuracy', train_acc, epoch)
        writer.add_scalar('train/loss', train_obj, epoch)
        writer.add_scalar('test/accuracy', test_acc, epoch)
        writer.add_scalar('test/loss', test_obj, epoch)

        scheduler.step()
    gpu_logger.stop()