コード例 #1
0
def load_svhn():
    svhn_train = loadmat('./data/train_32x32.mat')
    svhn_test = loadmat('./data/test_32x32.mat')
    svhn_train_im = svhn_train['X']
    svhn_train_im = svhn_train_im.transpose(3, 2, 0, 1).astype(np.float32)
    svhn_label = dense_to_one_hot(svhn_train['y'])
    svhn_test_im = svhn_test['X']
    svhn_test_im = svhn_test_im.transpose(3, 2, 0, 1).astype(np.float32)
    svhn_label_test = dense_to_one_hot(svhn_test['y'])

    return svhn_train_im, svhn_label, svhn_test_im, svhn_label_test
コード例 #2
0
ファイル: train.py プロジェクト: imbi7py/NNStudy
def train():

    # 读取record
    train_images, train_labels = read_record(record_train_name)
    validate_images, validate_labels = read_record(record_validate_name)

    # 获取batch
    train_image_batch, train_label_batch = get_batch(train_images, train_labels, BATCH_SIZE)
    validata_image_batch, validate_label_batch = get_batch(validate_images, validate_labels, BATCH_SIZE)

    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.int32, name='y-input')

    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))

    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))

    y = inference(x, weights1, biases1, weights2, biases2)

    # 计算交叉熵及其平均值
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    # 正则化
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    regularaztion = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularaztion

    # 优化器
    train_step = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss)

    # 计算正确率
    correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # 初始化会话,并开始训练过程。
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        threads = tf.train.start_queue_runners(sess=sess)
        for i in range(500):
            train_x, train_y = sess.run([train_image_batch, train_label_batch])
            train_y = utils.dense_to_one_hot(train_y, 2)
            sess.run(train_step, feed_dict={x: train_x, y_: train_y})
            # if i % 10 == 0:
            # print(sess.run(tf.arg_max(y, 1), feed_dict={x: xs, y_: ys}))
            # print(sess.run(tf.arg_max(ys, 1)))
            if i % 10 == 0:
                print("\n%d steps" % i)
                print("loss --> %g " % sess.run(loss, feed_dict={x: train_x, y_: train_y}))
                validate_x, validate_y = sess.run([validata_image_batch, validate_label_batch])
                validate_y = utils.dense_to_one_hot(validate_y, 2)
                print("accuracy --> %g" % sess.run(accuracy, feed_dict={x: validate_x, y_: validate_y}))
コード例 #3
0
ファイル: mnist.py プロジェクト: choice17/deep_learning_tf
    def extract_normalize_images(self):
        x_train_valid = self.data_df.iloc[:, 1:].values.reshape(
            -1, self.img_h, self.img_w, 1)  # (42000,28,28,1) array
        x_train_valid = x_train_valid.astype(
            np.float)  # convert from int64 to float32
        x_train_valid = utils.normalize_data(x_train_valid)

        x_test = self.test_df.iloc[:, 0:].values.reshape(
            -1, self.img_h, self.img_w, 1)  # (28000,28,28,1) array
        x_test = x_test.astype(np.float)
        x_test = utils.normalize_data(x_test)

        image_size = 784

        # extract image labels
        y_train_valid_labels = self.data_df.iloc[:,
                                                 0].values  # (42000,1) array
        labels_count = np.unique(y_train_valid_labels).shape[0]
        # number of different labels = 10

        #plot some images and labels
        #plt.figure(figsize=(15,9))
        #for i in range(50):
        #    plt.subplot(5,10,1+i)
        #    plt.title(y_train_valid_labels[i])
        #    plt.imshow(x_train_valid[i].reshape(28,28), cmap=cm.binary)

        # labels in one hot representation
        y_train_valid = utils.dense_to_one_hot(y_train_valid_labels,
                                               labels_count).astype(np.uint8)
        return (x_train_valid, y_train_valid, x_test)
コード例 #4
0
ファイル: ATDA.py プロジェクト: xmhGit/ATDA
def labeling_fuc(data, output1, output2, true_label, threshold=0.9):
    id = np.equal(np.argmax(output1, 1), np.argmax(output2, 1))
    output1 = output1[id, :]
    output2 = output2[id, :]
    data = data[id, :]
    true_label = true_label[id, :]
    max1 = np.max(output1, 1)
    max2 = np.max(output2, 1)
    id2 = np.max(np.vstack((max1, max2)), 0) > threshold
    output1 = output1[id2, :]
    data = data[id2, :]
    pseudo_label = utils.dense_to_one_hot(np.argmax(output1, 1), 10)
    true_label = true_label[id2, :]
    return data, pseudo_label, true_label
コード例 #5
0
ファイル: features.py プロジェクト: giahy2507/atepc
    def pad_sequence(self, word_ids, char_ids, labels=None):
        if labels:
            labels, _ = pad_sequences(labels, 0)
            labels = np.asarray(labels)
            labels = dense_to_one_hot(labels, len(self.vocab_tag), nlevels=2)

        word_ids, sequence_lengths = pad_sequences(word_ids, 0)
        word_ids = np.asarray(word_ids)

        if self.char_feature:
            char_ids, word_lengths = pad_sequences(char_ids,
                                                   pad_tok=0,
                                                   nlevels=2)
            char_ids = np.asarray(char_ids)
            return [word_ids, char_ids], labels
        else:
            return [word_ids], labels
コード例 #6
0
ファイル: reader.py プロジェクト: ErkocT/ImageFlow
def _read_labels_csv_from(path, num_classes, one_hot=False):
  """Reads
  Args:

  Returns:

  """
  print('Reading labels')
  with open(os.path.join(path), 'r') as dest_f:
    data_iter = csv.reader(dest_f)
    train_labels = [data for data in data_iter]

  train_labels = np.array(train_labels, dtype=np.uint32)

  if one_hot:
    labels_one_hot = utils.dense_to_one_hot(train_labels, num_classes)
    labels_one_hot = np.asarray(labels_one_hot)
    return labels_one_hot

  return train_labels
コード例 #7
0
def _read_labels_csv_from(path, num_classes, one_hot=False):
    """Reads
  Args:

  Returns:

  """
    print('Reading labels')
    with open(os.path.join(path), 'r') as dest_f:
        data_iter = csv.reader(dest_f)
        train_labels = [data for data in data_iter]

    train_labels = np.array(train_labels, dtype=np.uint32)

    if one_hot:
        labels_one_hot = utils.dense_to_one_hot(train_labels, num_classes)
        labels_one_hot = np.asarray(labels_one_hot)
        return labels_one_hot

    return train_labels
コード例 #8
0
def evaluate():
    with tf.Graph().as_default() as g:
        model = crnn.CRNN('test')
        model._build_model()

        #load training data
        test_data, test_label, valid_data, valid_label, Valid_label, Test_label, pernums_test, pernums_valid = load_data(
        )
        # test, valid segment size
        test_size = test_data.shape[0]
        valid_size = valid_data.shape[0]
        # for hole sentence label
        test_label = dense_to_one_hot(test_label, 4)
        valid_label = dense_to_one_hot(valid_label, 4)
        # for segement label
        Test_label = dense_to_one_hot(Test_label, 4)
        Valid_label = dense_to_one_hot(Valid_label, 4)

        # for sgement type : 1 :for hole sentence, 2: for sgement sentecne
        tnum = pernums_test.shape[0]
        vnum = pernums_valid.shape[0]

        pred_test_uw = np.empty((tnum, 4), dtype=np.float32)
        pred_test_w = np.empty((tnum, 4), dtype=np.float32)

        valid_iter = divmod((valid_size), FLAGS.valid_batch_size)[0]
        test_iter = divmod((test_size), FLAGS.test_batch_size)[0]
        y_pred_valid = np.empty((valid_size, 4), dtype=np.float32)
        y_pred_test = np.empty((test_size, 4), dtype=np.float32)

        y_test = np.empty((tnum, 4), dtype=np.float32)
        y_valid = np.empty((vnum, 4), dtype=np.float32)

        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
            labels=model.labels, logits=model.logits)
        variable_averages = tf.train.ExponentialMovingAverage(FLAGS.momentum)
        variable_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variable_to_restore)
        #saver = tf.train.Saver()

        flag = False
        best_valid_uw = 0
        best_valid_w = 0
        for i in range(5):
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    global_step = ckpt.model_checkpoint_path.split(
                        '/')[-1].split('-')[-1]

                    #for validation data
                    index = 0
                    cost_valid = 0
                    if (valid_size < FLAGS.valid_batch_size):
                        validate_feed = {
                            model.inputs: valid_data,
                            model.labels: Valid_label
                        }
                        y_pred_valid, loss = sess.run(
                            [model.softmax, cross_entropy],
                            feed_dict=validate_feed)
                        cost_valid = cost_valid + np.sum(loss)
                    else:
                        for v in range(valid_iter):
                            v_begin = v * FLAGS.valid_batch_size
                            v_end = (v + 1) * FLAGS.valid_batch_size
                            if (v == valid_iter - 1):
                                if (v_end < valid_size):
                                    v_end = valid_size
                            validate_feed = {
                                model.inputs: valid_data[v_begin:v_end],
                                model.labels: Valid_label[v_begin:v_end]
                            }
                            loss, y_pred_valid[v_begin:v_end, :] = sess.run(
                                [cross_entropy, model.softmax],
                                feed_dict=validate_feed)
                            cost_valid = cost_valid + np.sum(loss)
                    cost_valid = cost_valid / valid_size

                    print(y_pred_valid)
                    valid_acc_uw = recall(np.argmax(Valid_label, 1),
                                          np.argmax(y_pred_valid, 1),
                                          average='macro')
                    valid_acc_w = recall(np.argmax(Valid_label, 1),
                                         np.argmax(y_pred_valid, 1),
                                         average='weighted')
                    valid_conf = confusion(np.argmax(Valid_label, 1),
                                           np.argmax(y_pred_valid, 1))

                    print('----------segment metrics---------------')
                    print("Best valid_UA: %3.4g" % best_valid_uw)
                    print("Best valid_WA: %3.4g" % best_valid_w)
                    print('Valid Confusion Matrix:["ang","sad","hap","neu"]')
                    print(valid_conf)
                    print('----------segment metrics---------------')

                    for s in range(vnum):
                        y_valid[s, :] = np.max(
                            y_pred_valid[index:index + pernums_valid[s], :], 0)
                        index += pernums_valid[s]
                    valid_acc_uw = recall(np.argmax(valid_label, 1),
                                          np.argmax(y_valid, 1),
                                          average='macro')
                    valid_acc_w = recall(np.argmax(valid_label, 1),
                                         np.argmax(y_valid, 1),
                                         average='weighted')
                    valid_conf = confusion(np.argmax(valid_label, 1),
                                           np.argmax(y_valid, 1))

                    #for test set
                    index = 0
                    for t in range(test_iter):
                        t_begin = t * FLAGS.test_batch_size
                        t_end = (t + 1) * FLAGS.test_batch_size
                        if (t == test_iter - 1):
                            if (t_end < test_size):
                                t_end = test_size
                        #print t_begin,t_end,t,test_iter
                        test_feed = {
                            model.inputs: test_data[t_begin:t_end],
                            model.labels: Test_label[t_begin:t_end]
                        }
                        y_pred_test[t_begin:t_end, :] = sess.run(
                            model.logits, feed_dict=test_feed)

                    for s in range(tnum):
                        y_test[s, :] = np.max(
                            y_pred_test[index:index + pernums_test[s], :], 0)
                        index = index + pernums_test[s]

                    if valid_acc_uw > best_valid_uw:
                        best_valid_uw = valid_acc_uw
                        pred_test_uw = y_test
                        test_acc_uw = recall(np.argmax(test_label, 1),
                                             np.argmax(y_test, 1),
                                             average='macro')
                        test_conf = confusion(np.argmax(test_label, 1),
                                              np.argmax(y_test, 1))
                        confusion_uw = test_conf
                        flag = True

                    if valid_acc_w > best_valid_w:
                        best_valid_w = valid_acc_w
                        pred_test_w = y_test
                        test_acc_w = recall(np.argmax(test_label, 1),
                                            np.argmax(y_test, 1),
                                            average='weighted')
                        test_conf = confusion(np.argmax(test_label, 1),
                                              np.argmax(y_test, 1))
                        confusion_w = test_conf
                        flag = True
                    print(
                        "*****************************************************************"
                    )
                    print(global_step)
                    print("Epoch: %s" % global_step)
                    print("Valid cost: %2.3g" % cost_valid)
                    print("Valid_UA: %3.4g" % valid_acc_uw)
                    print("Valid_WA: %3.4g" % valid_acc_w)
                    print("Best valid_UA: %3.4g" % best_valid_uw)
                    print("Best valid_WA: %3.4g" % best_valid_w)
                    print('Valid Confusion Matrix:["ang","sad","hap","neu"]')
                    print(valid_conf)
                    print("Test_UA: %3.4g" % test_acc_uw)
                    print("Test_WA: %3.4g" % test_acc_w)
                    print('Test Confusion Matrix:["ang","sad","hap","neu"]')
                    print(confusion_uw)
                    print(
                        "*****************************************************************"
                    )
                    if (flag):
                        f = open(FLAGS.pred_name, 'wb')
                        pickle.dump((
                            best_valid_uw,
                            best_valid_w,
                            pred_test_w,
                            test_acc_w,
                            confusion_w,
                            pred_test_uw,
                            test_acc_uw,
                            confusion_uw,
                        ), f)
                        f.close()
                        flag = False
コード例 #9
0
def do_test(fname_model, test_file_dir, norm_dir, data_len, is_default,
            model_type):

    eval_input_dir = test_file_dir
    eval_output_dir = test_file_dir + '/Labels'

    graph = load_graph(fname_model)

    w = 19
    u = 9
    # [print(n.name) for n in graph.as_graph_def().node]
    # for op in graph.get_operations():
    #     print(op.name)

    final_softout = []
    final_label = []

    if model_type == 0:  # acam
        import data_reader_bDNN_v2 as dr
        print(os.path.abspath('./configure/ACAM'))
        sys.path.insert(0, os.path.abspath('./configure/ACAM'))

        import config as cg

        if is_default:
            w = 19
            u = 9
            valid_batch_size = 4096
        else:
            w = cg.w
            u = cg.u
            valid_batch_size = cg.batch_size

        valid_data_set = dr.DataReader(eval_input_dir,
                                       eval_output_dir,
                                       norm_dir,
                                       w=w,
                                       u=u,
                                       name="eval")
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_logits = graph.get_tensor_by_name('prefix/model_1/logits:0')
        node_raw_labels = graph.get_tensor_by_name(
            'prefix/model_1/raw_labels:0')

        while True:

            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)

            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: valid_labels,
                node_keep_probability: 1
            }
            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break

            with tf.Session(graph=graph) as sess:
                logits, raw_labels = sess.run([node_logits, node_raw_labels],
                                              feed_dict=feed_dict)

            soft_pred = bdnn_prediction(valid_batch_size,
                                        logits,
                                        threshold=0.6,
                                        w=w,
                                        u=u)[1]

            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)

            # if valid_data_set.eof_checker():
            #     final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
            #     final_label = np.reshape(np.asarray(final_label), [-1, 1])
            #     valid_data_set.reader_initialize()
            #     # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
            #     break

        return final_softout[0:data_len, :], final_label[0:data_len, :]

    if model_type == 1:  # bdnn
        import data_reader_bDNN_v2 as dr
        print(os.path.abspath('./configure/bDNN'))
        sys.path.insert(0, os.path.abspath('./configure/bDNN'))

        import config as cg

        if is_default:
            w = 19
            u = 9
            valid_batch_size = 4096
        else:
            w = cg.w
            u = cg.u
            valid_batch_size = cg.batch_size

        valid_data_set = dr.DataReader(
            eval_input_dir, eval_output_dir, norm_dir, w=w, u=u,
            name="eval")  # training data reader initialization
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_logits = graph.get_tensor_by_name('prefix/model_1/logits:0')

        while True:
            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)
            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: valid_labels,
                node_keep_probability: 1
            }

            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break

            with tf.Session(graph=graph) as sess:
                logits, labels = sess.run([node_logits, node_labels],
                                          feed_dict=feed_dict)

            soft_pred = bdnn_prediction(valid_batch_size,
                                        logits,
                                        threshold=0.6,
                                        w=w,
                                        u=u)[1]

            raw_indx = int(np.floor(labels.shape[1] / 2))
            raw_labels = labels[:, raw_indx]

            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)

        return final_softout[0:data_len, :], final_label[0:data_len, :]

    if model_type == 2:  # dnn
        import data_reader_DNN_v2 as dnn_dr
        print(os.path.abspath('./configure/DNN'))
        sys.path.insert(0, os.path.abspath('./configure/DNN'))

        import config as cg

        if is_default:
            w = 19
            u = 9
            valid_batch_size = 4096
        else:
            w = cg.w
            u = cg.u
            valid_batch_size = cg.batch_size

        valid_data_set = dnn_dr.DataReader(eval_input_dir,
                                           eval_output_dir,
                                           norm_dir,
                                           w=w,
                                           u=u,
                                           name="eval")
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_softpred = graph.get_tensor_by_name('prefix/model_1/soft_pred:0')
        node_raw_labels = graph.get_tensor_by_name(
            'prefix/model_1/raw_labels:0')
        while True:

            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)

            one_hot_labels = valid_labels.reshape((-1, 1))
            one_hot_labels = utils.dense_to_one_hot(one_hot_labels,
                                                    num_classes=2)
            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: one_hot_labels,
                node_keep_probability: 1
            }
            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break
            print("aa")
            session_conf = tf.ConfigProto(device_count={
                'CPU': 1,
                'GPU': 0
            },
                                          allow_soft_placement=True,
                                          log_device_placement=False)

            with tf.Session(graph=graph, config=session_conf) as sess:
                soft_pred, raw_labels = sess.run(
                    [node_softpred, node_raw_labels], feed_dict=feed_dict)
            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)

        return final_softout[0:data_len, :], final_label[0:data_len, :]

    if model_type == 3:  # lstm
        import data_reader_RNN as rnn_dr

        print(os.path.abspath('./configure/LSTM'))
        sys.path.insert(0, os.path.abspath('./configure/LSTM'))

        import config as cg

        if is_default:
            target_delay = 5
            seq_size = 20
            batch_num = 200
            valid_batch_size = seq_size * batch_num
        else:
            target_delay = cg.target_delay
            seq_size = cg.seq_len
            batch_num = cg.num_batches

            valid_batch_size = seq_size * batch_num

        valid_data_set = rnn_dr.DataReader(eval_input_dir,
                                           eval_output_dir,
                                           norm_dir,
                                           target_delay=target_delay,
                                           name="eval")
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_softpred = graph.get_tensor_by_name('prefix/model_1/soft_pred:0')
        node_raw_labels = graph.get_tensor_by_name(
            'prefix/model_1/raw_labels:0')

        while True:

            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)

            one_hot_labels = valid_labels.reshape((-1, 1))
            one_hot_labels = utils.dense_to_one_hot(one_hot_labels,
                                                    num_classes=2)
            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: one_hot_labels,
                node_keep_probability: 1
            }
            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break
            with tf.Session(graph=graph) as sess:
                soft_pred, raw_labels = sess.run(
                    [node_softpred, node_raw_labels], feed_dict=feed_dict)
            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)
            # if valid_data_set.eof_checker():
            #     final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
            #     final_label = np.reshape(np.asarray(final_label), [-1, 1])
            #     valid_data_set.reader_initialize()
            #     # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
            #     break

        return final_softout[0:data_len, :], final_label[0:data_len, :]
コード例 #10
0
labeled_data_size = 100
num_features = 784
image_size = 28
num_classes = 10
batch_size = 10
lambda_f = 0.04
k_of_knn = 10
m_of_knn = 50
SEED = 666
np.random.seed(SEED)

data_dict = sio.loadmat('MNIST')
# normalization
samples = data_dict['fea'] / 256
labels = dense_to_one_hot(data_dict['gnd'], num_classes)

# 有标记数据
# l_index = np.random.randint(5000, size=labeled_data_size)
l_index = equal_proportion_sampling(data_dict['gnd'][:5000], num_classes,
                                    labeled_data_size)
l_dataset = DataSet(samples[l_index], labels[l_index])

# 无标记数据
# u_index = np.arange(5000, 60000)
u_index = np.random.randint(5000, 60000, size=2000)
uindex_dataset = DataSet(u_index, labels[u_index])

sample_data = np.vstack((samples[l_index], samples[u_index]))
sample_label = np.vstack((labels[l_index], labels[u_index]))
コード例 #11
0
def train(train_dir=None, model_dir=None, mode='train'):
    model = crnn.CRNN(mode)
    model._build_model()
    global_step = tf.Variable(0, trainable=False)
    #sess1 = tf.InteractiveSession()

    #load training data
    train_data, train_label, valid_data, Valid_label = load_data()
    train_label = dense_to_one_hot(train_label, 4)
    Valid_label = dense_to_one_hot(Valid_label, 4)
    training_size = train_data.shape[0]

    with tf.name_scope('cross_entropy'):
        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
            labels=model.labels, logits=model.logits)
        loss = tf.reduce_mean(cross_entropy)


#        print model.logits.get_shape()
    with tf.name_scope('accuracy'):
        correct_pred = tf.equal(tf.argmax(model.softmax, 1),
                                tf.argmax(model.labels, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    with tf.name_scope("moving_average"):
        variable_averages = tf.train.ExponentialMovingAverage(
            FLAGS.momentum, global_step)
        variable_averages_op = variable_averages.apply(
            tf.trainable_variables())

    with tf.name_scope("train_step"):
        lr = tf.train.exponential_decay(FLAGS.learning_rate,
                                        global_step,
                                        training_size / FLAGS.train_batch_size,
                                        FLAGS.decay_rate,
                                        staircase=True)
        #print (lr.eval())
        train_step = tf.train.AdamOptimizer(lr).minimize(
            loss, global_step=global_step)
        with tf.control_dependencies([train_step, variable_averages_op]):
            train_op = tf.no_op(name='train')
    saver = tf.train.Saver()
    init = tf.global_variables_initializer()

    with tf.Session() as sess:
        sess.run(init)
        for e in range(FLAGS.num_epochs):
            print(type(train_label))
            print(train_label.shape)
            index = np.arange(training_size)
            np.random.shuffle(index)
            train_data = train_data[index]
            train_label = train_label[index]

            for i in range(int(training_size / FLAGS.train_batch_size) + 1):
                start = (i * FLAGS.train_batch_size) % training_size
                end = min(start + FLAGS.train_batch_size, training_size)
                _, loss_value, step, acc, softmax = sess.run(
                    [train_op, loss, global_step, accuracy, model.softmax],
                    feed_dict={
                        model.inputs: train_data[start:end],
                        model.labels: train_label[start:end]
                    })

                if i % 10 == 0:
                    print(
                        "After epoch:%d, step: %d, loss on training batch is %.2f, accuracy is %.3f."
                        % (e, step, loss_value, acc))
                    saver.save(sess,
                               os.path.join(FLAGS.checkpoint,
                                            FLAGS.model_name),
                               global_step=global_step)
                    train_acc_uw = recall(np.argmax(softmax, 1),
                                          np.argmax(train_label[start:end], 1),
                                          average='macro')
                    train_acc_w = recall(np.argmax(softmax, 1),
                                         np.argmax(train_label[start:end], 1),
                                         average='weighted')
                    train_conf = confusion(
                        np.argmax(softmax, 1),
                        np.argmax(train_label[start:end], 1))
                    print("train_UA: %3.4g" % train_acc_uw)
                    print("train_WA: %3.4g" % train_acc_w)
                    print('Confusion Matrix:["ang","sad","hap","neu"]')
                    print(train_conf)

                if i % 20 == 0:
                    #for validation data
                    valid_size = len(valid_data)
                    valid_iter = divmod((valid_size),
                                        FLAGS.valid_batch_size)[0]
                    y_pred_valid = np.empty((valid_size, 4), dtype=np.float32)
                    index = 0
                    cost_valid = 0
                    if (valid_size < FLAGS.valid_batch_size):
                        validate_feed = {
                            model.inputs: valid_data,
                            model.labels: Valid_label
                        }
                        y_pred_valid, p_loss = sess.run(
                            [model.softmax, cross_entropy],
                            feed_dict=validate_feed)
                        cost_valid = cost_valid + np.sum(p_loss)
                    else:
                        print(valid_data.shape)
                        for v in range(valid_iter):
                            v_begin = v * FLAGS.valid_batch_size
                            v_end = (v + 1) * FLAGS.valid_batch_size
                            if (v == valid_iter - 1):
                                if (v_end < valid_size):
                                    v_end = valid_size
                            validate_feed = {
                                model.inputs: valid_data[v_begin:v_end],
                                model.labels: Valid_label[v_begin:v_end]
                            }
                            p_loss, y_pred_valid[v_begin:v_end, :] = sess.run(
                                [cross_entropy, model.softmax],
                                feed_dict=validate_feed)
                            cost_valid = cost_valid + np.sum(p_loss)
                    cost_valid = cost_valid / valid_size
                    print(np.argmax(y_pred_valid, 1))
                    print(np.argmax(Valid_label, 1))
                    valid_acc_uw = recall(np.argmax(Valid_label, 1),
                                          np.argmax(y_pred_valid, 1),
                                          average='macro')
                    valid_acc_w = recall(np.argmax(Valid_label, 1),
                                         np.argmax(y_pred_valid, 1),
                                         average='weighted')
                    valid_conf = confusion(np.argmax(Valid_label, 1),
                                           np.argmax(y_pred_valid, 1))

                    print('----------segment metrics---------------')
                    print("valid_UA: %3.4g" % valid_acc_uw)
                    print("valid_WA: %3.4g" % valid_acc_w)
                    print('Valid Confusion Matrix:["ang","sad","hap","neu"]')
                    print(valid_conf)
                    print('----------segment metrics---------------')
コード例 #12
0
ファイル: graph_test.py プロジェクト: zsk843/vad_modified
def do_test(fname_model, test_file_dir, norm_dir, prj_dir, is_default,
            model_type):

    eval_input_dir = test_file_dir

    graph = load_graph(fname_model)

    w = 19
    u = 9
    # [print(n.name) for n in graph.as_graph_def().node]
    # for op in graph.get_operations():
    #     print(op.name)

    final_softout = []
    final_label = []

    if model_type == 0:  # acam
        import data_reader_bDNN_v2 as dr

        print(prj_dir + '/configure/ACAM')
        sys.path.insert(0, os.path.abspath(prj_dir + 'ACAM'))

        # import config as cg
        #
        # if is_default:
        #     w = 19
        #     u = 9
        #     valid_batch_size = 4096
        # else:
        #     w = cg.w
        #     u = cg.u
        #     valid_batch_size = cg.batch_size

        valid_data_set = dr.DataReader(eval_input_dir + "/train/feature_mrcg",
                                       eval_input_dir + "/train/label",
                                       norm_dir,
                                       w=w,
                                       u=u,
                                       name="eval")
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_logits = graph.get_tensor_by_name('prefix/model_1/logits:0')
        node_raw_labels = graph.get_tensor_by_name(
            'prefix/model_1/raw_labels:0')

        acc_sum = 0
        file_num = 0

        acc_sum = 0
        tp_sum = 0
        tn_sum = 0
        fp_sum = 0
        fn_sum = 0
        frame_num = 0

        while True:

            valid_inputs, valid_labels = valid_data_set.next_batch(7)

            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: valid_labels,
                node_keep_probability: 1
            }
            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break

            with tf.Session(graph=graph) as sess:
                logits, raw_labels = sess.run([node_logits, node_raw_labels],
                                              feed_dict=feed_dict)

            raw_labels = raw_labels.reshape((-1, 1))
            soft_pred = bdnn_prediction(len(raw_labels),
                                        logits,
                                        threshold=0.6,
                                        w=w,
                                        u=u)[0]
            eql = (raw_labels == soft_pred)

            acc = np.mean(eql)
            acc_sum += acc
            file_num += 1

            frame_s = len(raw_labels)
            frame_num += len(raw_labels)
            tn = 0
            tp = 0
            fp = 0
            fn = 0

            for i in range(len(soft_pred)):
                if soft_pred[i] == 0 and raw_labels[i] == 0:
                    tn += 1
                elif soft_pred[i] == 0 and raw_labels[i] == 1:
                    fn += 1
                elif soft_pred[i] == 1 and raw_labels[i] == 0:
                    fp += 1
                elif soft_pred[i] == 1 and raw_labels[i] == 1:
                    tp += 1

            final_softout.append(soft_pred)
            final_label.append(raw_labels)
            tn_sum += tn
            tp_sum += tp
            fn_sum += fn
            fp_sum += fp

            # if acc <= 0.7:
            #     file_name =valid_data_set.get_cur_file_name().split('/')[-1]
            #     obj_name = file_name.split('.')[0]
            #     wav_path = "/mnt/E_DRIVE/Lipr_with_label/train/low"
            #     shutil.copy("/mnt/E_DRIVE/Lipr_with_label/train/" + obj_name + '.wav', wav_path)
            #     np.save(os.path.join("/mnt/E_DRIVE/Lipr_with_label/train/low", obj_name + '.label.npy'),
            #             original_label(soft_pred, "/mnt/E_DRIVE/Lipr_with_label/train/" + obj_name + '.wav'))

            print(" train_accuracy=%4.4f" % (acc * 100))
            # print("path is " + valid_data_set.get_cur_file_name())
            print(
                "true_positive: %f, false positive: %f, true negative: %f, false negative: %f"
                % (tp / frame_s, fp / frame_s, tn / frame_s, fn / frame_s))

            # print("accuracy: %f, true_positive: %f, false positive: %f, true negative: %f, false negative: %f" % (
            # acc, tp / frame_s, fp / frame_s, tn / frame_s, fn / frame_s))
        print("total accuracy: " + str(acc_sum / file_num))
        print(
            "total: true_positive: %f, false positive: %f, true negative: %f, false negative: %f"
            % (tp_sum / frame_num, fp_sum / frame_num, tn_sum / frame_num,
               fn_sum / frame_num))

        return final_softout[:, :], final_label[:, :]

    if model_type == 1:  # bdnn
        import data_reader_bDNN_v2 as dr
        print(prj_dir + '/configure/bDNN')
        sys.path.insert(0, os.path.abspath(prj_dir + 'bDNN'))

        import config as cg

        if is_default:
            w = 19
            u = 9
            valid_batch_size = 4096
        else:
            w = cg.w
            u = cg.u
            valid_batch_size = cg.batch_size

        valid_data_set = dr.DataReader(
            eval_input_dir, eval_output_dir, norm_dir, w=w, u=u,
            name="eval")  # training data reader initialization
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_logits = graph.get_tensor_by_name('prefix/model_1/logits:0')

        while True:
            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)
            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: valid_labels,
                node_keep_probability: 1
            }

            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break

            with tf.Session(graph=graph) as sess:
                logits, labels = sess.run([node_logits, node_labels],
                                          feed_dict=feed_dict)

            soft_pred = bdnn_prediction(valid_batch_size,
                                        logits,
                                        threshold=0.6,
                                        w=w,
                                        u=u)[1]

            raw_indx = int(np.floor(labels.shape[1] / 2))
            raw_labels = labels[:, raw_indx]

            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)

        return final_softout[0:data_len, :], final_label[0:data_len, :]

    if model_type == 2:  # dnn
        import data_reader_DNN_v2 as dnn_dr
        print(prj_dir + '/configure/DNN')
        sys.path.insert(0, os.path.abspath(prj_dir + 'DNN'))

        import config as cg

        if is_default:
            w = 19
            u = 9
            valid_batch_size = 4096
        else:
            w = cg.w
            u = cg.u
            valid_batch_size = cg.batch_size

        valid_data_set = dnn_dr.DataReader(eval_input_dir,
                                           eval_output_dir,
                                           norm_dir,
                                           w=w,
                                           u=u,
                                           name="eval")
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_softpred = graph.get_tensor_by_name('prefix/model_1/soft_pred:0')
        node_raw_labels = graph.get_tensor_by_name(
            'prefix/model_1/raw_labels:0')
        while True:

            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)

            one_hot_labels = valid_labels.reshape((-1, 1))
            one_hot_labels = utils.dense_to_one_hot(one_hot_labels,
                                                    num_classes=2)
            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: one_hot_labels,
                node_keep_probability: 1
            }
            if valid_data_set.eof_checker():
                final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
                break
            with tf.Session(graph=graph) as sess:
                soft_pred, raw_labels = sess.run(
                    [node_softpred, node_raw_labels], feed_dict=feed_dict)
            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)

        return final_softout[0:data_len, :], final_label[0:data_len, :]

    if model_type == 3:  # lstm

        import data_reader_RNN as rnn_dr

        print(prj_dir + '/configure/LSTM')
        sys.path.insert(0, os.path.abspath(prj_dir + 'LSTM'))

        import config as cg

        if is_default:
            target_delay = 5
            seq_size = 20
            batch_num = 200
            valid_batch_size = seq_size * batch_num
        else:
            target_delay = cg.target_delay
            seq_size = cg.seq_len

            valid_batch_size = seq_size

        valid_data_set = rnn_dr.DataReader(eval_input_dir +
                                           "/train/feature_mrcg",
                                           eval_input_dir + '/train/label',
                                           norm_dir,
                                           target_delay=target_delay,
                                           name="eval")
        node_inputs = graph.get_tensor_by_name('prefix/model_1/inputs:0')
        node_labels = graph.get_tensor_by_name('prefix/model_1/labels:0')
        node_keep_probability = graph.get_tensor_by_name(
            'prefix/model_1/keep_probabilty:0')

        node_softpred = graph.get_tensor_by_name('prefix/model_1/soft_pred:0')
        node_raw_labels = graph.get_tensor_by_name(
            'prefix/model_1/raw_labels:0')

        while True:

            valid_inputs, valid_labels = valid_data_set.next_batch(
                valid_batch_size)

            one_hot_labels = valid_labels.reshape((-1, 1))
            one_hot_labels = utils.dense_to_one_hot(one_hot_labels,
                                                    num_classes=2)
            feed_dict = {
                node_inputs: valid_inputs,
                node_labels: one_hot_labels,
                node_keep_probability: 1
            }

            if valid_data_set.eof_checker():
                # final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
                # final_label = np.reshape(np.asarray(final_label), [-1, 1])
                valid_data_set.reader_initialize()
                break

            with tf.Session(graph=graph) as sess:
                soft_pred, raw_labels = sess.run(
                    [node_softpred, node_raw_labels], feed_dict=feed_dict)
            raw_labels = raw_labels.reshape((-1, 1))

            final_softout.append(soft_pred)
            final_label.append(raw_labels)
            # if valid_data_set.eof_checker():
            #     final_softout = np.reshape(np.asarray(final_softout), [-1, 1])
            #     final_label = np.reshape(np.asarray(final_label), [-1, 1])
            #     valid_data_set.reader_initialize()
            #     # print('Valid data reader was initialized!')  # initialize eof flag & num_file & start index
            #     break

        return final_softout, final_label
def extract_utterance_level_features(idx, path_save):
    tf.reset_default_graph()
    tf.set_random_seed(371)
    filename = "%s/CV_0%s/Frame_CV_0%s.pickle" % (path_save, idx, idx)
    with open(filename, 'rb') as handle:
        data = pickle.load(handle)

    X_Frame_train = data['X_Frame_train'].astype('float32')
    y_Frame_train = data['y_Frame_train']
    idx_Frame_train = data['idx_Frame_train']
    X_Frame_test = data['X_Frame_test'].astype('float32')
    y_Frame_test = data['y_Frame_test']
    idx_Frame_test = data['idx_Frame_test']
    y_train = data['y_Utter_train']
    y_test = data['y_Utter_test']

    n_classes = y_test.max() + 1
    y_train_onehot = dense_to_one_hot(y_Frame_train, n_classes)
    y_test_onehot = dense_to_one_hot(y_Frame_test, n_classes)

    log('Training Deep Neural Network............................')
    for d in ['/gpu:%s' % 0]:
        with tf.device(d):

            X = tf.placeholder(tf.float32, [None, X_Frame_train.shape[1]])
            Y = tf.placeholder(tf.float32, [None, n_classes])

            weights = {
                #he init : stddev=np.sqrt(2 / dim_input)
                'encoder_h1':
                tf.Variable(
                    tf.random_normal([X_Frame_train.shape[1], dim_hidden_1],
                                     stddev=np.sqrt(2 /
                                                    X_Frame_train.shape[1]))),
                'encoder_h2':
                tf.Variable(
                    tf.random_normal([dim_hidden_1, dim_hidden_2],
                                     stddev=np.sqrt(2 / dim_hidden_1))),
                'encoder_h3':
                tf.Variable(
                    tf.random_normal([dim_hidden_2, dim_hidden_3],
                                     stddev=np.sqrt(2 / dim_hidden_2))),
                'encoder_output':
                tf.Variable(
                    tf.random_normal([dim_hidden_3, n_classes],
                                     stddev=np.sqrt(2 / dim_hidden_3)))
            }
            biases = {
                'encoder_b1': tf.Variable(tf.zeros([dim_hidden_1])),
                'encoder_b2': tf.Variable(tf.zeros([dim_hidden_2])),
                'encoder_b3': tf.Variable(tf.zeros([dim_hidden_3])),
                'encoder_output': tf.Variable(tf.zeros([n_classes]))
            }

            Z1 = tf.matmul(X, weights['encoder_h1']) + biases['encoder_b1']
            l1 = tf.nn.relu(Z1)

            Z2 = tf.matmul(l1, weights['encoder_h2']) + biases['encoder_b2']
            l2 = tf.nn.relu(Z2)

            Z3 = tf.matmul(l2, weights['encoder_h3']) + biases['encoder_b3']
            l3 = tf.nn.relu(Z3)

            output = tf.matmul(
                l3, weights['encoder_output']) + biases['encoder_output']
            pred = tf.nn.softmax(output)

            cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=Y))
            optimizer = tf.train.AdamOptimizer().minimize(cost)

            correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                          device_count={'GPU': 1},
                                          gpu_options=gpu_options)) as sess:
        sess.run(tf.global_variables_initializer())
        log('Training CV %s Deep Neural Network............................' %
            idx)
        for epoch in range(training_epoch):
            _, c = sess.run([optimizer, cost],
                            feed_dict={
                                X: X_Frame_train,
                                Y: y_train_onehot
                            })
            if (epoch % display_step) == 0:
                train_accuracy = sess.run([accuracy],
                                          feed_dict={
                                              X: X_Frame_train,
                                              Y: y_train_onehot
                                          })
                test_accuracy = sess.run([accuracy],
                                         feed_dict={
                                             X: X_Frame_test,
                                             Y: y_test_onehot
                                         })
                log("Epoch: {:02d} \t\tCost={:.2f} \tTrainAcc: {:.2f} \tTestAcc: {:.2f}"
                    .format(epoch, c, train_accuracy[0], test_accuracy[0]))

        X_Frame_DNN_train = sess.run(pred, feed_dict={X: X_Frame_train})
        X_Frame_DNN_test = sess.run(pred, feed_dict={X: X_Frame_test})

    X_Frame_DNN_train, X_Frame_DNN_test = normalize_Zscore(
        X_Frame_DNN_train, X_Frame_DNN_test)

    utterFeatList = []
    for i in range(idx_Frame_train.max() + 1):
        frames = X_Frame_DNN_train[idx_Frame_train == i, :]
        if frames.size != 0:
            utter_feat = np.hstack([
                np.amax(frames, axis=0),
                np.amin(frames, axis=0),
                np.mean(frames, axis=0),
                np.mean(frames > 0.2, axis=0)
            ])
            utterFeatList.append(utter_feat)
        X_train = np.vstack(utterFeatList)

    utterFeatList_test = []
    for i in range(idx_Frame_test.max() + 1):
        frames = X_Frame_DNN_test[idx_Frame_test == i, :]
        if frames.size != 0:
            utter_feat = np.hstack([
                np.amax(frames, axis=0),
                np.amin(frames, axis=0),
                np.mean(frames, axis=0),
                np.mean(frames > 0.2, axis=0)
            ])
            utterFeatList_test.append(utter_feat)
        X_test = np.vstack(utterFeatList_test)
    log("Utterance-Level-Features are extracted.")

    log("Classifying Speech Emotions using Utter-Level features............................"
        )
    """Extreme Learning Machine"""
    rhl = RBFRandomLayer(n_hidden=200, rbf_width=0.1)
    elmr = GenELMClassifier(hidden_layer=rhl)
    elmr.fit(X_train, y_train)
    y_pred = elmr.predict(X_test)
    test_weighted_accuracy = elmr.score(X_test, y_test)

    uar = 0
    cnf_matrix = confusion_matrix(y_test, y_pred)
    diag = np.diagonal(cnf_matrix)
    for index, i in enumerate(diag):
        uar += i / collections.Counter(y_test)[index]
    test_unweighted_accuracy = uar / len(cnf_matrix)
    accuracy = []
    accuracy.append(test_weighted_accuracy * 100)
    accuracy.append(test_unweighted_accuracy * 100)

    a = ['Ang', 'Hap', 'Neu', 'Sad']
    # Compute confusion matrix
    cnf_matrix = np.transpose(cnf_matrix)
    cnf_matrix = cnf_matrix * 100 / cnf_matrix.astype(np.int).sum(axis=0)
    cnf_matrix = np.transpose(cnf_matrix).astype(float)
    cnf_matrix = np.around(cnf_matrix, decimals=1)

    #accuracy per class
    conf_mat = (cnf_matrix.diagonal() * 100) / cnf_matrix.sum(axis=1)
    conf_mat = np.around(conf_mat, decimals=2)

    log('==============[ [%s] ]==============' % idx)
    log('Feature Dimension: %d' % X_train.shape[1])
    log('Confusion Matrix:\n%s' % cnf_matrix)
    log('Accuracy per classes:\n%s' % conf_mat)
    log("WAR\t\t\t:\t%.2f %%" % (test_weighted_accuracy * 100))
    log("UAR\t\t\t:\t%.2f %%" % (test_unweighted_accuracy * 100))

    return np.around(np.array(accuracy), decimals=1)