def random_forest(X,y,X_train,y_train,X_test,y_test,params): reg = RandomForestClassifier(n_estimators = params['n_estimators'],max_depth = params['max_depth']) reg.fit(X_train,y_train) y_pre = reg.predict(X_test) metrics = show_metrics('Random Forest',y_test,y_pre) draw_roc(X,y,X_train,y_train,X_test,y_test,reg) return metrics
def svm(X,y,X_train,y_train,X_test,y_test,params): reg = SVC(params) reg.fit (X_train,y_train) y_pre = reg.predict(X_test) metrics = show_metrics('SVM',y_test,y_pre) draw_roc(X,y,X_train,y_train,X_test,y_test,reg) return metrics
def logistic_regression(X,y,X_train,y_train,X_test,y_test,params): reg = LogisticRegression(C = params) reg.fit (X_train,y_train) y_pre = reg.predict(X_test) metrics = show_metrics('Logistic Regression',y_test,y_pre) draw_roc(X,y,X_train,y_train,X_test,y_test,reg) return metrics