コード例 #1
0
def evaluate(path, file):

    logger = utils.genlogger(os.path.join(path, 'stats.txt'))
    logger.info("Output Path: {}".format(path))
    logger.info("<---- Evaluation on Test Set ---->")

    obj = torch.load(os.path.join(path, file), lambda stg, loc: stg)
    test_label = obj['test_label']
    config = obj['config']
    Net = torch.load(config['Net'])

    model = getattr(M, config['model'])(Net, n_class=config['n_class'])
    model.load_param(obj['param'])
    model = model.to(device)

    tta_transform = utils.test_transform()
    test_dataloader = dataloader_test(
        config['data_h5'], test_label, tta_transform, \
        T = config['time_step'], **config['dataloader_param']
    )

    _, f1_macro, f1_micro, acc, auc = utils.evaluate(model, test_dataloader,
                                                     device, None,
                                                     config['threshold'])

    logger.info("<---- test evaluation: ---->")
    logger.info(
        "f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}".format(
            f1_macro, f1_micro, acc, auc))
コード例 #2
0
def run(config_file):
    config = get_config(config_file)

    cur_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
    outdir = os.path.join(config['outputdir'], cur_time)
    os.makedirs(outdir)

    logger = utils.genlogger(os.path.join(outdir, 'log.txt'))
    logger.info("Output Path: {}".format(outdir))
    logger.info("<---- config details ---->")
    for key in config:
        logger.info("{}: {}".format(key, config[key]))
    logger.info("<---- end of config ---->")

    train_dev = pd.read_csv(config['train_dev'], sep=',')
    n_class = config['n_class']

    #train_set, dev_set, test_set = utils.train_dev_test_split(df, outdir)
    train_set, dev_set = utils.train_dev_split(train_dev, outdir)
    test_set = pd.read_csv(config['test'], sep=',').values
    num = 10 if args.debug else None

    train_label = utils.one_hot(train_set, n_class, num)
    dev_label = utils.one_hot(dev_set, n_class, num)
    test_label = utils.one_hot(test_set, n_class, num)
    logger.info("train set: {} samples".format(len(train_label)))
    logger.info("dev set: {} samples".format(len(dev_label)))
    logger.info("test set: {} samples".format(len(test_label)))

    #Net = torchvision.models.resnet152(pretrained=False)
    #Net.load_state_dict(torch.load(config['Net']).state_dict())
    Net = torch.load(config['Net'])
    #mrcnn = torchvision.models.detection.maskrcnn_resnet50_fpn(
    #        pretrained=True
    #        #pretrained_backbone=False
    #    )
    #mrcnn = torch.load(config['mrcnn'])

    model = getattr(M, config['model'])(Net,
                                        n_class=n_class,
                                        **config['model_param'])
    if config['pretrain']:
        obj = torch.load(config['pretrain_model'], lambda x, y: x)
        model.load_param(obj['param'])
    logger.info("model: {}".format(str(model)))
    origin_model = model

    if (torch.cuda.device_count() > 1):
        model = torch.nn.DataParallel(model)

    logger.info("Use {} GPU(s)".format(torch.cuda.device_count()))

    model = model.to(device)

    # if config['model_param']['Net_grad']:
    #     optimizer = getattr(optim, config['optim'])([
    #         {'params': origin_model.get_Net_param(), 'lr': config['Net_lr']},
    #         {'params': origin_model.get_other_param()}
    #         ], lr=config['other_lr']
    #     )
    # else:
    #     optimizer = getattr(optim, config['optim'])(
    #         origin_model.get_other_param(),
    #         lr=config['other_lr']
    #     )
    optimizer = getattr(optim, config['optim'])(origin_model.parameters(),
                                                lr=config['other_lr'])

    lr_scheduler = getattr(optim.lr_scheduler,
                           config['lr_scheduler'])(optimizer,
                                                   **config['scheduler_param'])

    #criterion = getattr(l, 'FocalSymmetricLovaszHardLogLoss')()
    criterion = getattr(losses, config['Loss'])(**config['Loss_param'])

    #train_transform = utils.augmentation()
    train_transform = utils.train_transform()
    test_transform = utils.simple_transform()

    train_dataloader = oversample_dataloader(
        config['data_h5'], train_label, train_transform, \
        T = config['time_step'], **config['dataloader_param']
    )
    dev_dataloader = dataloader_single(
        config['data_h5'], dev_label, test_transform, \
        T = config['time_step'], **config['dataloader_param']
    )
    test_dataloader = dataloader_single(
        config['data_h5'], test_label, test_transform, \
        T = config['time_step'], **config['dataloader_param']
    )

    best_dev_loss = np.inf

    dev_loss, f1_macro, f1_micro, acc, auc = utils.evaluate(
        model, dev_dataloader, device, criterion, config['threshold'])
    best_f1 = f1_macro + f1_micro
    logger.info("dev_loss: {:.4f}\tf1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}"\
        .format(dev_loss, f1_macro, f1_micro, acc, auc))

    for epoch in range(1, config['n_epoch'] + 1):
        logger.info("<---- Epoch: {} start ---->".format(epoch))

        #if (epoch >= 10 and config['model_param']['Net_grad']):
        #    optimizer.param_groups[0]['lr'] = optimizer.param_groups[1]['lr'] / 1000
        train_loss = one_epoch(model, optimizer, criterion, train_dataloader,
                               True, config['grad_clip'])

        dev_loss, f1_macro, f1_micro, acc, auc = utils.evaluate(
            model, dev_dataloader, device, criterion, config['threshold'])
        logger.info("train_loss: {:.4f}\tdev_loss: {:.4f}".format(
            train_loss, dev_loss))

        logger.info(
            "DEV: f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}"
            .format(f1_macro, f1_micro, acc, auc))

        if epoch % config['saveinterval'] == 0:
            model_path = os.path.join(outdir, 'model_{}.th'.format(epoch))
            torch.save(
                {
                    "param": origin_model.get_param(),
                    "train_label": train_label,
                    "dev_label": dev_label,
                    "test_label": test_label,
                    "config": config
                }, model_path)
        # if best_dev_loss > dev_loss:
        #     model_path = os.path.join(outdir, 'model.th')
        #     torch.save({
        #         "param": origin_model.get_param(),
        #         "train_label": train_label,
        #         "dev_label": dev_label,
        #         "test_label": test_label,
        #         "config": config
        #     }, model_path)
        #     best_dev_loss = dev_loss

        if best_f1 < f1_macro + f1_micro:
            model_path = os.path.join(outdir, 'model_acc.th')
            torch.save(
                {
                    "param": origin_model.get_param(),
                    "train_label": train_label,
                    "dev_label": dev_label,
                    "test_label": test_label,
                    "config": config
                }, model_path)
            best_f1 = f1_macro + f1_micro

        _, f1_macro, f1_micro, acc, auc = utils.evaluate(
            model, test_dataloader, device, None, config['threshold'])

        logger.info(
            "TEST: f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}"
            .format(f1_macro, f1_micro, acc, auc))

        schedarg = dev_loss if lr_scheduler.__class__.__name__ == 'ReduceLROnPlateau' else None
        lr_scheduler.step(schedarg)

    _, f1_macro, f1_micro, acc, auc = utils.evaluate(model, test_dataloader,
                                                     device, None,
                                                     config['threshold'])

    logger.info("<---- test evaluation: ---->")
    logger.info(
        "f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}".format(
            f1_macro, f1_micro, acc, auc))
コード例 #3
0
def run(config_file):
    config = get_config(config_file)

    cur_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
    outdir = os.path.join(config['outputdir'], cur_time)
    os.makedirs(outdir)

    logger = utils.genlogger(os.path.join(outdir, 'log.txt'))
    logger.info("Output Path: {}".format(outdir))
    logger.info("<---- config details ---->")
    for key in config:
        logger.info("{}: {}".format(key, config[key]))
    logger.info("<---- end of config ---->")

    n_class = config['n_class']

    train_set = pd.read_csv(config['train_dev'], sep=',').values
    #test_set = pd.read_csv(config['test'], sep=',').values
    num = 10 if args.debug else None

    train_label = utils.one_hot(train_set, n_class, num)
    #test_label = utils.one_hot(test_set, n_class, num)
    logger.info("train set: {} samples".format(len(train_label)))
    #logger.info("test set: {} samples".format(len(test_label)))

    Net = torch.load(config['Net'])

    model = getattr(M, config['model'])(Net,
                                        n_class=n_class,
                                        **config['model_param'])
    if config['pretrain']:
        obj = torch.load(config['pretrain_model'], lambda x, y: x)
        model.load_param(obj['param'])
        logger.info('load from {}'.format(config['pretrain_model']))
    logger.info("model: {}".format(str(model)))
    origin_model = model

    if (torch.cuda.device_count() > 1):
        model = torch.nn.DataParallel(model)

    logger.info("Use {} GPU(s)".format(torch.cuda.device_count()))

    model = model.to(device)

    optimizer = getattr(optim, config['optim'])(origin_model.parameters(),
                                                lr=config['other_lr'])

    criterion = getattr(losses, config['Loss'])(**config['Loss_param'])

    train_transform = utils.train_transform()
    #test_transform = utils.simple_transform()

    train_dataloader = oversample_dataloader(
        config['data_h5'], train_label, train_transform, \
        T = config['time_step'], **config['dataloader_param']
    )

    # test_dataloader = dataloader_single(
    #     config['data_h5'], test_label, test_transform, \
    #     T = config['time_step'], **config['dataloader_param']
    # )

    # test_loss, f1_macro, f1_micro, acc, auc = utils.evaluate(
    #     model, test_dataloader, device,
    #     criterion, config['threshold']
    # )
    # best_f1 = f1_macro + f1_micro
    # logger.info("test_loss: {:.4f}\tf1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}"\
    #     .format(test_loss, f1_macro, f1_micro, acc, auc))
    for epoch in range(1, config['n_epoch'] + 1):
        logger.info("<---- Epoch: {} start ---->".format(epoch))

        #if (epoch >= 10 and config['model_param']['Net_grad']):
        #    optimizer.param_groups[0]['lr'] = optimizer.param_groups[1]['lr'] / 1000
        train_loss = one_epoch(model, optimizer, criterion, train_dataloader,
                               True, config['grad_clip'])

        # test_loss, f1_macro, f1_micro, acc, auc = utils.evaluate(
        #     model, test_dataloader, device,
        #     criterion, config['threshold']
        # )
        # logger.info("train_loss: {:.4f}\tdev_loss: {:.4f}".format(train_loss, test_loss))

        # logger.info("TEST: f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}".format(f1_macro, f1_micro, acc, auc))

        if epoch % config['saveinterval'] == 0:
            model_path = os.path.join(outdir, 'model_{}.th'.format(epoch))
            torch.save(
                {
                    "param": origin_model.get_param(),
                    #"train_label": train_label,
                    #"test_label": test_label,
                    "config": config
                },
                model_path)

        model_path = os.path.join(outdir, 'model.th')
        torch.save(
            {
                "param": origin_model.get_param(),
                #"train_label": train_label,
                "config": config
            },
            model_path)
コード例 #4
0
def run(config_file):
    config = get_config(config_file)

    cur_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
    outdir = os.path.join(config['outputdir'], cur_time)
    os.makedirs(outdir)

    logger = utils.genlogger(os.path.join(outdir, 'log.txt'))
    logger.info("Output Path: {}".format(outdir))
    logger.info("<---- config details ---->")
    for key in config:
        logger.info("{}: {}".format(key, config[key]))
    logger.info("<---- end of config ---->")

    train_dev = pd.read_csv(config['train_dev'], sep=',')
    n_class = config['n_class']


    #train_set, dev_set, test_set = utils.train_dev_test_split(df, outdir)
    train_set, dev_set = utils.train_dev_split(train_dev, outdir)
    test_set = pd.read_csv(config['test'], sep=',').values
    num = 5 if args.debug else None

    train_label = utils.one_hot(train_set, n_class, num)
    dev_label = utils.one_hot(dev_set, n_class, num)
    test_label = utils.one_hot(test_set, n_class, num)
    logger.info("train set: {} samples".format(len(train_label)))
    logger.info("dev set: {} samples".format(len(dev_label)))
    logger.info("test set: {} samples".format(len(test_label)))

    Net = torchvision.models.densenet201(pretrained=False)
    Net.load_state_dict(torch.load(config['Net']).state_dict())

    model = getattr(M, config['model'])(
        Net, n_class=n_class, **config['model_param']
    )
    logger.info("model: {}".format(str(model.other)))
    origin_model = model

    if (torch.cuda.device_count() > 1):
        model = torch.nn.DataParallel(model)

    logger.info("Use {} GPU(s)".format(torch.cuda.device_count()))

    model = model.to(device)
    if config['model_param']['Net_grad']:
        optimizer = getattr(optim, config['optim'])([
            {'params': origin_model.get_Net_param(), 'lr': config['Net_lr']}, 
            {'params': origin_model.get_other_param()}
            ], lr=config['other_lr']
        )
    else:
        optimizer = getattr(optim, config['optim'])(
            origin_model.get_other_param(), 
            lr=config['other_lr']
        )

    lr_scheduler = getattr(optim.lr_scheduler, config['lr_scheduler'])(
        optimizer, **config['scheduler_param']
    )

    criterion = getattr(torch.nn, config['Loss'])()

    train_transform = utils.train_transform()
    test_transform = utils.test_transform()
    train_dataloader = dataloader_multiple(
        config['data_h5'], train_label, train_transform, \
        T=config['time_step'], **config['dataloader_param']
    )
    dev_dataloader = dataloader_multiple(
        config['data_h5'], dev_label, test_transform, \
        T=config['time_step'], **config['dataloader_param']
    )
    test_dataloader = dataloader_multiple(
        config['data_h5'], test_label, test_transform, \
        T=config['time_step'], **config['dataloader_param']
    )

    best_dev_loss = np.inf


    dev_loss = one_epoch(
            model, optimizer, criterion, dev_dataloader, False)
    f1_macro, f1_micro, acc = utils.evaluate(
        model, dev_dataloader, device, config['threshold'])
    best_f1 = f1_macro + f1_micro
    logger.info("dev_loss: {:.4f}\tf1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}"\
        .format(dev_loss, f1_macro, f1_micro, acc))
 
    for epoch in range(1, config['n_epoch'] + 1):
        logger.info("<---- Epoch: {} start ---->".format(epoch))
        train_loss = one_epoch(
            model, optimizer, criterion, train_dataloader, True, config['grad_clip']
        )
        dev_loss = one_epoch(
            model, optimizer, criterion, dev_dataloader, False
        )
        logger.info("train_loss: {:.4f}\tdev_loss: {:.4f}".format(train_loss, dev_loss))

        f1_macro, f1_micro, acc = utils.evaluate(
            model, dev_dataloader, device, config['threshold'])

        logger.info("f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}".format(f1_macro, f1_micro, acc))


        if epoch % config['saveinterval'] == 0:
            model_path = os.path.join(outdir, 'model_{}.th'.format(epoch))
            torch.save({
                "param": origin_model.get_param(),
                "train_label": train_label,
                "dev_label": dev_label,
                "test_label": test_label,
                "config": config
            }, model_path)
        if best_dev_loss > dev_loss:
            model_path = os.path.join(outdir, 'model.th')
            torch.save({
                "param": origin_model.get_param(),
                "train_label": train_label,
                "dev_label": dev_label,
                "test_label": test_label,
                "config": config
            }, model_path)
            best_dev_loss = dev_loss
        if best_f1 < f1_macro + f1_micro:
            model_path = os.path.join(outdir, 'model_acc.th')
            torch.save({
                "param": origin_model.get_param(),
                "train_label": train_label,
                "dev_label": dev_label,
                "test_label": test_label,
                "config": config
            }, model_path)
            best_f1 = f1_macro + f1_micro

        schedarg = dev_loss if lr_scheduler.__class__.__name__ == 'ReduceLROnPlateau' else None
        lr_scheduler.step(schedarg)

    f1_macro, f1_micro, acc = utils.evaluate(
        model, test_dataloader, device, config['threshold'])


    logger.info("f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}".format(f1_macro, f1_micro, acc))
コード例 #5
0
def evaluate():
    obj = torch.load(args.model, lambda x, y: x)
    params = obj['param']
    config = obj['config']

    out_dir = args.path
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    logger = utils.genlogger(os.path.join(out_dir, 'log.txt'))
    out_pred = os.path.join(out_dir, args.pred)
    out_disc = os.path.join(out_dir, args.disc)

    n_class = config['n_class']
    Net = torch.load('../code/resnet_nofc.th')
    model = getattr(M, config['model'])(
        Net, n_class=n_class, **config['model_param']
    )
    model.load_param(params)
    origin_model = model

    if (torch.cuda.device_count() > 1):
        model = torch.nn.DataParallel(model)
    transform = utils.simple_transform()
    threshold = config['threshold']

    model = model.to(device)
    model = model.eval()
    disc, con = {}, {}

    #images = glob('test_fold/*.jpg')
    f = h5py.File('../test/test_256.h5', 'r')
    
    with torch.set_grad_enabled(False):

        for key in tqdm(f.keys()):
            input = None
            features = f[key][()]
            for feature in features:
                feature = transform(torch.as_tensor(
                    np.rollaxis(feature, 2, 0)
                )).unsqueeze(0) # 1 x C x H x W
                input = torch.cat((input, feature)) \
                    if input is not None else feature

            input = input.to(device)
            prob = model(input)[0].cpu().numpy().mean(0) # 10
            pred = prob >= (threshold if np.max(prob) > threshold else np.max(prob))
            disc[key] = ";".join(np.argwhere(pred == 1).reshape(-1).astype(str))
            con[key] = ";".join(np.around(prob, decimals=4).reshape(-1).astype(str))

    # with torch.set_grad_enabled(False):
    #     features = None
    #     names = []
    #     for image in images:
    #         name = image.split('/')[-1]
    #         image = np.array(Image.open(image).resize((256,256))).astype(np.float32)
    #         feature = transform(torch.as_tensor(
    #             np.rollaxis(image, 2, 0)
    #         )).unsqueeze(0).to(device) # 1 x C x H x W
    #         prob = model(feature)[0].cpu().numpy().mean(0) # 10
    #         pred = prob >= (threshold if np.max(prob) > threshold else np.max(prob))
    #         disc[name] = ";".join(np.argwhere(pred == 1).reshape(-1).astype(str))
    #         con[name] = ";".join(np.around(prob, decimals=4).reshape(-1).astype(str))


    disc_df = pd.DataFrame(disc.items(), columns=['id', 'label']).set_index('id')
    con_df = pd.DataFrame(con.items(), columns=['id', 'pred']).set_index('id')
    disc_df.to_csv(out_disc, sep=',')
    con_df.to_csv(out_pred, sep=',')
コード例 #6
0
def run(config_file):
    config = get_config(config_file)

    cur_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
    outdir = os.path.join(config['outputdir'], cur_time)
    os.makedirs(outdir)

    logger = utils.genlogger(os.path.join(outdir, 'log.txt'))
    logger.info("Output Path: {}".format(outdir))
    logger.info("<---- config details ---->")
    for key in config:
        logger.info("{}: {}".format(key, config[key]))
    logger.info("<---- end of config ---->")

    train_dev = pd.read_csv(config['train_dev'], sep=',')
    n_class = config['n_class']

    #train_set, dev_set, test_set = utils.train_dev_test_split(df, outdir)
    #train_set, dev_set = utils.train_dev_split(train_dev, outdir)
    train_set = train_dev.values
    test_set = pd.read_csv(config['test'], sep=',').values
    num = 5 if args.debug else None

    train_label = utils.one_hot(train_set, n_class, num)
    #dev_label = utils.one_hot(dev_set, n_class, num)
    test_label = utils.one_hot(test_set, n_class, num)
    logger.info("train set: {} samples".format(len(train_label)))
    #logger.info("dev set: {} samples".format(len(dev_label)))
    logger.info("test set: {} samples".format(len(test_label)))
    dim = config['pretrain_dim']
    model = getattr(M, config['model'])(dim,
                                        n_class=n_class,
                                        **config['model_param'])
    if config['pretrain']:
        obj = torch.load(config['pretrain_model'], lambda x, y: x)
        model.load_param(obj['param'])
    logger.info("model: {}".format(str(model)))
    origin_model = model

    if (torch.cuda.device_count() > 1):
        model = torch.nn.DataParallel(model)

    logger.info("Use {} GPU(s)".format(torch.cuda.device_count()))

    model = model.to(device)

    optimizer = getattr(optim, config['optim'])(origin_model.parameters(),
                                                lr=config['other_lr'])

    lr_scheduler = getattr(optim.lr_scheduler,
                           config['lr_scheduler'])(optimizer,
                                                   **config['scheduler_param'])

    criterion = getattr(losses, config['Loss'])()

    train_dataloader = predict_dataloader(
        config['data_h5'], train_label, \
        **config['dataloader_param']
    )
    # dev_dataloader = predict_dataloader(
    #     config['data_h5'], dev_label, test_transform, \
    #     T = config['time_step'], **config['dataloader_param']
    # )
    test_dataloader = predict_dataloader(
        config['data_h5'], test_label, \
        **config['dataloader_param']
    )

    test_loss, f1_macro, f1_micro, acc, auc = utils.evaluate_folder(
        model, test_dataloader, device, criterion, config['threshold'])
    best_test_loss = test_loss
    best_f1 = f1_macro + f1_micro
    logger.info("dev_loss: {:.4f}\tf1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}"\
        .format(test_loss, f1_macro, f1_micro, acc, auc))

    for epoch in range(1, config['n_epoch'] + 1):
        logger.info("<---- Epoch: {} start ---->".format(epoch))

        #if (epoch >= 10 and config['model_param']['Net_grad']):
        #    optimizer.param_groups[0]['lr'] = optimizer.param_groups[1]['lr'] / 1000
        train_loss = one_epoch(model, optimizer, criterion, train_dataloader,
                               True, config['grad_clip'])

        test_loss, f1_macro, f1_micro, acc, auc = utils.evaluate_folder(
            model, test_dataloader, device, criterion, config['threshold'])
        logger.info("train_loss: {:.4f}\tdev_loss: {:.4f}".format(
            train_loss, test_loss))

        logger.info(
            "TEST: f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}"
            .format(f1_macro, f1_micro, acc, auc))

        if epoch % config['saveinterval'] == 0:
            model_path = os.path.join(outdir, 'model_{}.th'.format(epoch))
            torch.save({
                "param": origin_model.state_dict(),
                "config": config
            }, model_path)
        if best_test_loss > test_loss:
            model_path = os.path.join(outdir, 'model.th')
            torch.save({
                "param": origin_model.state_dict(),
                "config": config
            }, model_path)
            best_test_loss = test_loss

        if best_f1 < f1_macro + f1_micro:
            model_path = os.path.join(outdir, 'model_acc.th')
            torch.save({
                "param": origin_model.state_dict(),
                "config": config
            }, model_path)
            best_f1 = f1_macro + f1_micro

        schedarg = test_loss if lr_scheduler.__class__.__name__ == 'ReduceLROnPlateau' else None
        lr_scheduler.step(schedarg)

    _, f1_macro, f1_micro, acc, auc = utils.evaluate_folder(
        model, test_dataloader, device, None, config['threshold'])

    logger.info("<---- test evaluation: ---->")
    logger.info(
        "f1_macro: {:.4f}\tf1_micro: {:.4f}\tacc: {:.4f}\tauc: {:.4f}".format(
            f1_macro, f1_micro, acc, auc))