コード例 #1
0
    def __init__(self, model, config_file, train=True):
        self.model = model
        self.config = utils.get_yaml_contents(config_file)
        self.is_train = train

        self.exclude_blocks = [
            'Mixed_1', 'Mixed_2', 'Mixed_3', 'Mixed_4', 'Mixed_5', 'Mixed_6',
            'maxpool4', 'maxpool7', 'inception_fc0', 'inception_fc1',
            'dp0_inception_fc', 'dp1_inception_fc', 'pc_fc0', 'pc_fc1',
            'dp0_pc_fc', 'dp1_pc_fc', 'dp_combined', 'fc1', 'dp1', 'logits',
            'Logits', 'Predictions', 'Logits/biases', 'agg', 'agg/biases',
            'transform_net1', 'dgcnn1', 'dgcnn2', 'dgcnn3', 'dgcnn4', 'fc2',
            'fc3', 'dp2'
        ]

        if self.model == "3DmFV":
            self.m = self.config['models']['3DmFV']['n_gaussians']
            self.gmm_variance = self.config['models']['3DmFV']['gmm_variance']
            self.gmm = utils.get_3d_grid_gmm(
                subdivisions=[self.m, self.m, self.m],
                variance=self.gmm_variance)

        self.set_config()
        self.set_logdir()
        self.load_train_data()
        self.input_dim = 6 if self.model_config.pointcloud_color else 3
        self.load_model()
コード例 #2
0
        cos = cos_ang[expert_to_use, range(len(expert_to_use))]

        ang_err_batch = np.rad2deg(np.arccos(np.abs(cos)))  # unoriented
        ang_err.append(ang_err_batch)

        loss_sum += loss_val
        test_writer.add_summary(summary, step)
        total_seen += BATCH_SIZE

    mean_loss = loss_sum / float(test_num_batchs)
    log_string('eval mean loss: %f' % (mean_loss))

    ang_err = np.reshape(ang_err, [n_shapes, PATCHES_PER_SHAPE])
    rms = np.sqrt(np.mean(np.square(ang_err), axis=1))
    mean_rms = np.mean(rms)
    log_string('eval mean rms: %f' % (mean_rms))
    tf.summary.scalar('Eval RMS angle', mean_rms)

    return mean_loss


if __name__ == "__main__":

    gmm = utils.get_3d_grid_gmm(
        subdivisions=[N_GAUSSIANS, N_GAUSSIANS, N_GAUSSIANS],
        variance=GMM_VARIANCE)
    pickle.dump(gmm, open(os.path.join(LOG_DIR, 'gmm.p'), "wb"))
    train(gmm)

    LOG_FOUT.close()
コード例 #3
0
                            default='data/test/PMD_M20.pcd')
        parser.add_argument(
            '--dataset',
            help='cloud to test',
            default='/media/emha/HDD4/pointcloud_dataset/pcd/asus/test')
        # /home/emha/pmd_multiview_dataset/
        # /media/emha/HDD1/Dataset/rgbd-dataset-51/
        args = parser.parse_args()
        cloud = args.pcd
        data_folder = args.dataset
        gmm = None
        if fe is not "mc":
            n_gaussian = int(''.join(filter(str.isdigit, fe)))
            print(n_gaussian)
            gmm = utils.get_3d_grid_gmm(
                subdivisions=[n_gaussian, n_gaussian, n_gaussian],
                variance=0.05)

        acc = evaluate_maxrdd_fv_cls(data_folder,
                                     classifier,
                                     objects='all',
                                     color=True,
                                     gmm=gmm,
                                     feature_extraction=fe,
                                     mc_feature=True)

        #acc = evaluate_cls_using_pgz(data_folder, gmm, classifier, fe, [10,13])
        accuracies.append(acc)
        indices.append(int(idx))

    plt.scatter(indices, accuracies)