コード例 #1
0
def STFT(data_params,data_list,data_path,start_index,end_index,path,nperseg=256,noverlap=128):
    data_size = end_index-start_index
    ntime = int(np.ceil(data_params['data_len']/(nperseg-noverlap)))
    data_stft = np.zeros((data_size,int(nperseg/2+1),1,ntime))

    for idx in range(start_index,end_index):
        x = get_batch_signal(data_params,data_list,data_path,idx,idx+1)
        x = np.squeeze(x,axis=0)
        _,_,Zxx = stft(x,window='hann',nperseg=nperseg,noverlap=noverlap,return_onesided=True,boundary='zeros',padded=True,axis=0)
        data_stft[idx-start_index,:,:,:] = np.abs(Zxx[:,:,:-1])

    # Conversion in log scale to align with human perception
    data_stft = np.log(data_stft+1e-6)

    # Normalization with zero mean and unit deviation
    file_name = 'STFTparameters'
    if not os.path.isfile(os.path.join(path,file_name)):
        SMean = np.mean(data_stft,axis=(0,3))
        SStd = np.std(data_stft,axis=(0,3),ddof=0)
        scipy.io.savemat(os.path.join(path,file_name),{'SMean':SMean,'SStd':SStd})
    else: # For the testing set
        STFT_params = scipy.io.loadmat(os.path.join(path,file_name))
        SMean = STFT_params['SMean']
        SStd = STFT_params['SStd']

    SMean = np.repeat(np.expand_dims(SMean,axis=-1),np.shape(data_stft)[-1],axis=-1)
    SStd = np.repeat(np.expand_dims(SStd,axis=-1),np.shape(data_stft)[-1],axis=-1)
    data_stft = (data_stft-SMean)/SStd/3

    # Bound clipping and rescaling to [-1,1]
    data_stft = np.clip(data_stft,-1,1)
    
    # Permute dimension to [data_size,128(time),128(freq bins),1]
    data_stft = np.transpose(data_stft[:,:-1,:,:],axes=(0,3,1,2))
    return data_stft
コード例 #2
0
def get_STFT_moment(data_params,data_list,data_path,start_index,end_index,path,nperseg=256,noverlap=128):
    data_size = end_index-start_index
    ntime = int(np.ceil(data_params['data_len']/(nperseg-noverlap)))
    data_stft = np.zeros((data_size,int(nperseg/2+1),1,ntime))

    for idx in range(start_index,end_index):
        x = get_batch_signal(data_params,data_list,data_path,idx,idx+1)
        x = np.squeeze(x,axis=0)
        _,_,Zxx = stft(x,window='hann',nperseg=nperseg,noverlap=noverlap,return_onesided=True,boundary='zeros',padded=True,axis=0)
        data_stft[idx-start_index,:,:,:] = np.abs(Zxx[:,:,:-1])

    print(np.max(data_stft))

    # Conversion in log scale to align with human perception
    data_stft = np.log(data_stft+1e-6)

    # Normalization with zero mean and unit deviation
    file_name = 'STFTparameters'
    SMean = np.mean(data_stft,axis=(0,3))
    SStd = np.std(data_stft,axis=(0,3),ddof=0)
    scipy.io.savemat(os.path.join(path,file_name+'.mat'),{'SMean':SMean,'SStd':SStd})
コード例 #3
0
def train_SW_batch(data_params, network_params, training_params, real_data,
                   data_path, result_path):
    start_time = time.time()
    batch_size = network_params['batch_size']
    D_rounds = training_params['D_round']
    G_rounds = training_params['G_round']
    begin_epoch = training_params['begin_epoch']
    end_epoch = training_params['end_epoch']
    noverlap = data_params['noverlap']
    nperseg = data_params['nperseg']
    decay = training_params['decay']
    G_lr = training_params['G_lr']
    D_lr = training_params['D_lr']

    Gen_loss = []
    Dis_loss = []
    Dreal_loss = []
    Dfake_loss = []
    Idx = []
    MMD_list = []
    RMSE_list = []

    D_grad = []
    D_grad_epoch = []
    D_grad_batch = []
    G_grad = []
    G_grad_epoch = []
    G_grad_batch = []
    Discriminator.trainable = True
    D_f = get_weight_grad(Discriminator)
    Combined.layers[2].trainable = False
    G_f = get_weight_grad(Combined)

    Training_log_file = 'training_log_' + str(begin_epoch) + '_' + str(
        end_epoch) + '.txt'
    if not os.path.exists(result_path):
        os.mkdir(result_path)

    get_STFT_moment(data_params,
                    real_data,
                    data_path,
                    0,
                    5,
                    result_path,
                    noverlap=noverlap)

    with open(os.path.join(result_path, Training_log_file), 'w') as filehandle:
        filehandle.write(
            str(data_params) + '\n' + str(network_params) + '\n' +
            str(training_params) + '\n')

    random.shuffle(real_data)
    test_size = int(0.1 * data_params['data_size'])
    train_size = data_params['data_size'] - test_size
    test_data = real_data[:test_size]
    train_data = list(set(real_data) - set(test_data))
    test_signal = get_batch_signal(data_params, test_data, data_path, 0,
                                   test_size)
    data_stft = STFT_2C(data_params,
                        train_data,
                        data_path,
                        0,
                        train_size,
                        result_path,
                        noverlap=noverlap)

    nb_batch = int(
        np.ceil((data_params['data_size'] - test_size) /
                float(network_params['batch_size'])))

    for epoch in range(begin_epoch, end_epoch + 1):

        np.random.shuffle(train_data)
        curr_log = 'Epoch ' + str(epoch) + ': ' + '\n'
        print(colored('Training epoch ' + str(epoch), 'yellow'))

        # Learning rate decayed every 50 epochs
        if epoch % (training_params['decay_epoch']) == 0:
            G_lr = G_lr * decay
            D_lr = D_lr * decay
            K.set_value(Combined.optimizer.lr, G_lr)
            K.set_value(Discriminator.optimizer.lr, D_lr)
            curr_log = curr_log + 'G learning rate decayed to ' + str(
                G_lr) + '\n'
            curr_log = curr_log + 'D learning rate decayed to ' + str(
                D_lr) + '\n'

        for index in range(0, nb_batch - D_rounds, D_rounds):
            if epoch == begin_epoch or True:  #float(Dis_loss[-1]) > 0.7*float(Gen_loss[-1]):
                for d in range(D_rounds):
                    batch_stft = STFT_2C(data_params,
                                         train_data,
                                         data_path, (index + d) * batch_size,
                                         (index + d + 1) * batch_size,
                                         result_path,
                                         noverlap=noverlap)
                    batch_real_label = np.ones((batch_size, 1))

                    batch_noise = np.random.uniform(
                        -1, 1, size=[batch_size, network_params['latent_dim']])
                    batch_generated = Generator.predict(batch_noise)
                    batch_fake_label = np.zeros((batch_size, 1))

                    ####### D gradient begin ######
                    evaluated_gradients_real = eval_weight_norm(
                        Discriminator, D_f, batch_stft, batch_real_label)
                    evaluated_gradients_fake = eval_weight_norm(
                        Discriminator, D_f, batch_generated, batch_fake_label)
                    D_grad.append(
                        (evaluated_gradients_real + evaluated_gradients_fake) /
                        2)
                    D_grad_epoch.append(epoch)
                    D_grad_batch.append(index)
                    ####### D gradient end ######

                    d_b_loss_fake = Discriminator.train_on_batch(
                        batch_generated, batch_fake_label)
                    d_b_loss_real = Discriminator.train_on_batch(
                        batch_stft, batch_real_label)
                    d_b_loss = (d_b_loss_fake + d_b_loss_real) / 2
                    print(
                        colored(
                            'The D loss at batch %s of epoch %s is %0.6f' %
                            (index + d, epoch, d_b_loss), 'blue'))

            if epoch == begin_epoch or True:  #float(Gen_loss[-1]) > 0.7*float(Dis_loss[-1]):
                for _ in range(G_rounds):
                    batch_noise = np.random.uniform(
                        -1, 1, size=[batch_size, network_params['latent_dim']])
                    batch_trick = np.ones((batch_size, 1))

                    ####### G gradient begin ######
                    evaluated_gradients = eval_weight_norm(
                        Combined, G_f, batch_noise, batch_trick)
                    G_grad.append(evaluated_gradients)
                    G_grad_epoch.append(epoch)
                    G_grad_batch.append(index)
                    ####### G gradient end ######

                    g_b_loss = Combined.train_on_batch(batch_noise,
                                                       batch_trick)
                    print('The G loss at batch %s of epoch %s is %0.6f' %
                          (index + d, epoch, g_b_loss))

        input_noise = np.random.uniform(-1,
                                        1,
                                        size=(train_size,
                                              network_params['latent_dim']))
        generated_stft = Generator.predict(input_noise)

        # Evaluate G loss and D loss
        Idx.append(epoch)
        input_trick = np.ones((train_size, 1))
        Gen_loss.append(Combined.evaluate(input_noise, input_trick))
        curr_log = curr_log + '   Generator loss:' + str(Gen_loss[-1]) + '\n'

        # Evaluate D loss in real and fake dataset respectively
        Dreal_loss.append(
            Discriminator.evaluate(data_stft, np.ones((train_size, 1))))
        Dfake_loss.append(
            Discriminator.evaluate(generated_stft, np.zeros((train_size, 1))))

        Dis_loss.append((Dreal_loss[-1] + Dfake_loss[-1]) / 2)
        curr_log = curr_log + '   Discriminator loss:' + str(
            Dis_loss[-1]) + '\n'
        print('now Gen_loss is %0.6f' % Gen_loss[-1])
        print('now Dis_loss is %0.6f' % Dis_loss[-1])

        input_noise = np.random.uniform(-1,
                                        1,
                                        size=(train_size,
                                              network_params['latent_dim']))
        generated_stft = Generator.predict(input_noise)
        # Evaluate MMD & RMSE
        np.random.shuffle(generated_stft)
        generated_stft_MMD = generated_stft[:test_size, :, :, :]
        generated_signal_MMD = ISTFT_2C(data_params,
                                        generated_stft_MMD,
                                        result_path,
                                        noverlap=noverlap)
        sigma = [pairwisedistances(test_signal[:], generated_signal_MMD[:])]
        mmd = MMD(test_signal[:], generated_signal_MMD[:], sigma)
        rmse = RMSE(np.squeeze(test_signal, axis=-1),
                    np.squeeze(generated_signal_MMD, axis=-1))
        MMD_list.append(mmd)
        RMSE_list.append(rmse)
        curr_log = curr_log + '   MMD:' + str(mmd) + '\n'

        if epoch % 10 == 0:
            plt.plot(Idx, MMD_list, 'y', label='MMD')
            plt.ylim(0, 0.2)
            plt.xlabel('Epoch')
            plt.ylabel('MMD')

            plot_name = 'MMD.png'

            plt.savefig(os.path.join(result_path, plot_name))
            plt.close()

            plt.plot(Idx, RMSE_list, 'm')
            plt.xlabel('Epoch')
            plt.ylabel('RMSE')

            plot_name = 'RMSE.png'

            plt.savefig(os.path.join(result_path, plot_name))
            plt.close()

        # Draw loss curves after every 10 epochs
        if epoch % 50 == 0:
            plotdata = {
                'eval_idx': Idx,
                'Dreal_loss': Dreal_loss,
                'Dfake_loss': Dfake_loss
            }
            draw_D_loss(plotdata, result_path, epoch)
            plotdata_GD = {
                'G_loss': Gen_loss,
                'D_loss': Dis_loss,
                'G_idx': Idx,
                'D_idx': Idx
            }
            draw_train_loss(plotdata_GD, result_path, epoch)
            curr_log = curr_log + 'Loss curve generated' + '\n'

        # Save model weights every 10 epochs
        if epoch % 50 == 0:
            Gen_wfile = 'GW_epoch_' + str(epoch) + '.hdf5'
            Dis_wfile = 'DW_epoch_' + str(epoch) + '.hdf5'
            Generator.save_weights(os.path.join(result_path, Gen_wfile), True)
            Discriminator.save_weights(os.path.join(result_path, Dis_wfile),
                                       True)

# Plot generated examples every 10 epochs
        if epoch % 50 == 0:
            generated_signal = ISTFT_2C(data_params,
                                        generated_stft[1:6, :, :, :],
                                        result_path,
                                        noverlap=noverlap)
            draw_generated_signal(np.array(generated_signal),
                                  result_path,
                                  epoch=epoch)
            curr_log = curr_log + '   Generated example saved' + '\n'

        if epoch % 10 == 0:
            scipy.io.savemat(
                os.path.join(result_path, 'Training_history.mat'), {
                    'G_loss': Gen_loss,
                    'D_loss': Dis_loss,
                    'index': Idx,
                    'MMD': MMD_list,
                    'RMSE': RMSE_list
                })
            scipy.io.savemat(
                os.path.join(result_path, 'Gradients.mat'), {
                    'D_grad': D_grad,
                    'D_epoch': D_grad_epoch,
                    'D_batch': D_grad_batch,
                    'G_grad': G_grad,
                    'G_epoch': G_grad_epoch,
                    'G_batch': G_grad_batch
                })

# Write log file
        with open(os.path.join(result_path, Training_log_file),
                  'a') as filehandle:
            filehandle.write(curr_log)
            filehandle.write('Training time: ' +
                             str((time.time() - start_time) / 60) + ' min \n')
            filehandle.write('\n')
            filehandle.close()