def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) data_dir = utils.get_data_dir_from_flags(FLAGS) if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) ds_info = tfds.builder(FLAGS.dataset).info batch_size = ((FLAGS.per_core_batch_size // FLAGS.ensemble_size) * FLAGS.num_cores) train_dataset_size = ds_info.splits['train'].num_examples steps_per_epoch = train_dataset_size // batch_size test_dataset_size = ds_info.splits['test'].num_examples steps_per_eval = test_dataset_size // batch_size num_classes = ds_info.features['label'].num_classes train_builder = ub.datasets.get(FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TRAIN, validation_percent=1. - FLAGS.train_proportion) train_dataset = train_builder.load(batch_size=batch_size) validation_dataset = None steps_per_validation = 0 if FLAGS.train_proportion < 1.0: validation_builder = ub.datasets.get(FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.VALIDATION, validation_percent=1. - FLAGS.train_proportion) validation_dataset = validation_builder.load(batch_size=batch_size) validation_dataset = strategy.experimental_distribute_dataset( validation_dataset) steps_per_validation = validation_builder.num_examples // batch_size clean_test_builder = ub.datasets.get(FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TEST) clean_test_dataset = clean_test_builder.load(batch_size=batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset), } steps_per_epoch = train_builder.num_examples // batch_size steps_per_eval = clean_test_builder.num_examples // batch_size num_classes = 100 if FLAGS.dataset == 'cifar100' else 10 if FLAGS.corruptions_interval > 0: if FLAGS.dataset == 'cifar100': data_dir = FLAGS.cifar100_c_path corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset) for corruption_type in corruption_types: for severity in range(1, 6): dataset = ub.datasets.get( f'{FLAGS.dataset}_corrupted', corruption_type=corruption_type, data_dir=data_dir, severity=severity, split=tfds.Split.TEST).load(batch_size=batch_size) test_datasets[f'{corruption_type}_{severity}'] = ( strategy.experimental_distribute_dataset(dataset)) summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) with strategy.scope(): logging.info('Building Keras model') model = ub.models.wide_resnet_rank1( input_shape=(32, 32, 3), depth=28, width_multiplier=10, num_classes=num_classes, alpha_initializer=FLAGS.alpha_initializer, gamma_initializer=FLAGS.gamma_initializer, alpha_regularizer=FLAGS.alpha_regularizer, gamma_regularizer=FLAGS.gamma_regularizer, use_additive_perturbation=FLAGS.use_additive_perturbation, ensemble_size=FLAGS.ensemble_size, random_sign_init=FLAGS.random_sign_init, dropout_rate=FLAGS.dropout_rate, prior_mean=FLAGS.prior_mean, prior_stddev=FLAGS.prior_stddev) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Linearly scale learning rate and the decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * batch_size / 128 lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200 for start_epoch_str in FLAGS.lr_decay_epochs] lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule( steps_per_epoch, base_lr, decay_ratio=FLAGS.lr_decay_ratio, decay_epochs=lr_decay_epochs, warmup_epochs=FLAGS.lr_warmup_epochs) optimizer = tf.keras.optimizers.SGD(lr_schedule, momentum=1.0 - FLAGS.one_minus_momentum, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/kl': tf.keras.metrics.Mean(), 'train/kl_scale': tf.keras.metrics.Mean(), 'train/elbo': tf.keras.metrics.Mean(), 'train/loss': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/kl': tf.keras.metrics.Mean(), 'test/elbo': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } eval_dataset_splits = ['test'] if validation_dataset: metrics.update({ 'validation/negative_log_likelihood': tf.keras.metrics.Mean(), 'validation/kl': tf.keras.metrics.Mean(), 'validation/elbo': tf.keras.metrics.Mean(), 'validation/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'validation/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), }) eval_dataset_splits += ['validation'] for i in range(FLAGS.ensemble_size): for dataset_split in eval_dataset_splits: metrics[ f'{dataset_split}/nll_member_{i}'] = tf.keras.metrics.Mean( ) metrics[f'{dataset_split}/accuracy_member_{i}'] = ( tf.keras.metrics.SparseCategoricalAccuracy()) if FLAGS.corruptions_interval > 0: corrupt_metrics = {} for intensity in range(1, 6): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/kl_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/elbo_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins)) checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch def compute_l2_loss(model): filtered_variables = [] for var in model.trainable_variables: # Apply l2 on the BN parameters and bias terms. This # excludes only fast weight approximate posterior/prior parameters, # but pay caution to their naming scheme. if ('kernel' in var.name or 'batch_norm' in var.name or 'bias' in var.name): filtered_variables.append(tf.reshape(var, (-1, ))) l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss( tf.concat(filtered_variables, axis=0)) return l2_loss @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] if FLAGS.ensemble_size > 1: images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) labels = tf.tile(labels, [FLAGS.ensemble_size]) with tf.GradientTape() as tape: logits = model(images, training=True) negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True)) l2_loss = compute_l2_loss(model) kl = sum(model.losses) / train_dataset_size kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype) kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs kl_scale = tf.minimum(1., kl_scale) kl_loss = kl_scale * kl # Scale the loss given the TPUStrategy will reduce sum all gradients. loss = negative_log_likelihood + l2_loss + kl_loss scaled_loss = loss / strategy.num_replicas_in_sync elbo = -(negative_log_likelihood + l2_loss + kl) grads = tape.gradient(scaled_loss, model.trainable_variables) # Separate learning rate implementation. if FLAGS.fast_weight_lr_multiplier != 1.0: grads_and_vars = [] for grad, var in zip(grads, model.trainable_variables): # Apply different learning rate on the fast weight approximate # posterior/prior parameters. This is excludes BN and slow weights, # but pay caution to the naming scheme. if ('kernel' not in var.name and 'batch_norm' not in var.name and 'bias' not in var.name): grads_and_vars.append( (grad * FLAGS.fast_weight_lr_multiplier, var)) else: grads_and_vars.append((grad, var)) optimizer.apply_gradients(grads_and_vars) else: optimizer.apply_gradients(zip(grads, model.trainable_variables)) probs = tf.nn.softmax(logits) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/kl'].update_state(kl) metrics['train/kl_scale'].update_state(kl_scale) metrics['train/elbo'].update_state(elbo) metrics['train/loss'].update_state(loss) metrics['train/accuracy'].update_state(labels, probs) metrics['train/ece'].add_batch(probs, label=labels) for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) @tf.function def test_step(iterator, dataset_split, dataset_name, num_steps): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] if FLAGS.ensemble_size > 1: images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) logits = tf.reshape([ model(images, training=False) for _ in range(FLAGS.num_eval_samples) ], [FLAGS.num_eval_samples, FLAGS.ensemble_size, -1, num_classes]) probs = tf.nn.softmax(logits) if FLAGS.ensemble_size > 1: per_probs = tf.reduce_mean(probs, axis=0) # marginalize samples for i in range(FLAGS.ensemble_size): member_probs = per_probs[i] member_loss = tf.keras.losses.sparse_categorical_crossentropy( labels, member_probs) metrics[f'{dataset_split}/nll_member_{i}'].update_state( member_loss) metrics[ f'{dataset_split}/accuracy_member_{i}'].update_state( labels, member_probs) # Negative log marginal likelihood computed in a numerically-stable way. labels_broadcasted = tf.broadcast_to( labels, [FLAGS.num_eval_samples, FLAGS.ensemble_size, labels.shape[0]]) log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy( labels_broadcasted, logits, from_logits=True) negative_log_likelihood = tf.reduce_mean( -tf.reduce_logsumexp(log_likelihoods, axis=[0, 1]) + tf.math.log(float(FLAGS.num_eval_samples * FLAGS.ensemble_size))) probs = tf.math.reduce_mean(probs, axis=[0, 1]) # marginalize l2_loss = compute_l2_loss(model) kl = sum(model.losses) / test_dataset_size elbo = -(negative_log_likelihood + l2_loss + kl) if dataset_name == 'clean': metrics[ f'{dataset_split}/negative_log_likelihood'].update_state( negative_log_likelihood) metrics[f'{dataset_split}/kl'].update_state(kl) metrics[f'{dataset_split}/elbo'].update_state(elbo) metrics[f'{dataset_split}/accuracy'].update_state( labels, probs) metrics[f'{dataset_split}/ece'].add_batch(probs, label=labels) else: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state(negative_log_likelihood) corrupt_metrics['test/kl_{}'.format( dataset_name)].update_state(kl) corrupt_metrics['test/elbo_{}'.format( dataset_name)].update_state(elbo) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state(labels, probs) corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch( probs, label=labels) for _ in tf.range(tf.cast(num_steps, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) train_step(train_iterator) current_step = (epoch + 1) * steps_per_epoch max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) logging.info(message) if validation_dataset: validation_iterator = iter(validation_dataset) test_step(validation_iterator, 'validation', 'clean', steps_per_validation) datasets_to_evaluate = {'clean': test_datasets['clean']} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): test_iterator = iter(test_dataset) logging.info('Testing on dataset %s', dataset_name) logging.info('Starting to run eval at epoch: %s', epoch) test_step(test_iterator, 'test', dataset_name, steps_per_eval) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics( corrupt_metrics, corruption_types) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) if FLAGS.ensemble_size > 1: for i in range(FLAGS.ensemble_size): logging.info( 'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i, metrics['test/nll_member_{}'.format(i)].result(), metrics['test/accuracy_member_{}'.format(i)].result() * 100) total_results = { name: metric.result() for name, metric in metrics.items() } total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in metrics.values(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved last checkpoint to %s', final_checkpoint_name) with summary_writer.as_default(): hp.hparams({ 'base_learning_rate': FLAGS.base_learning_rate, 'one_minus_momentum': FLAGS.one_minus_momentum, 'l2': FLAGS.l2, 'fast_weight_lr_multiplier': FLAGS.fast_weight_lr_multiplier, 'num_eval_samples': FLAGS.num_eval_samples, })
def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) data_dir = utils.get_data_dir_from_flags(FLAGS) if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) ds_info = tfds.builder(FLAGS.dataset).info batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores // FLAGS.num_dropout_samples_training) test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores steps_per_epoch = ds_info.splits['train'].num_examples // batch_size steps_per_eval = ds_info.splits['test'].num_examples // test_batch_size num_classes = ds_info.features['label'].num_classes train_builder = ub.datasets.get(FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TRAIN, validation_percent=1. - FLAGS.train_proportion) train_dataset = train_builder.load(batch_size=batch_size) validation_dataset = None steps_per_validation = 0 if FLAGS.train_proportion < 1.0: validation_builder = ub.datasets.get(FLAGS.dataset, data_dir=data_dir, split=tfds.Split.VALIDATION, validation_percent=1. - FLAGS.train_proportion) validation_dataset = validation_builder.load( batch_size=test_batch_size) validation_dataset = strategy.experimental_distribute_dataset( validation_dataset) steps_per_validation = validation_builder.num_examples // test_batch_size clean_test_builder = ub.datasets.get(FLAGS.dataset, data_dir=data_dir, split=tfds.Split.TEST) clean_test_dataset = clean_test_builder.load(batch_size=test_batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset), } steps_per_epoch = train_builder.num_examples // batch_size steps_per_eval = clean_test_builder.num_examples // batch_size num_classes = 100 if FLAGS.dataset == 'cifar100' else 10 if FLAGS.corruptions_interval > 0: if FLAGS.dataset == 'cifar100': data_dir = FLAGS.cifar100_c_path corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset) for corruption_type in corruption_types: for severity in range(1, 6): dataset = ub.datasets.get( f'{FLAGS.dataset}_corrupted', corruption_type=corruption_type, data_dir=data_dir, severity=severity, split=tfds.Split.TEST).load(batch_size=test_batch_size) test_datasets[f'{corruption_type}_{severity}'] = ( strategy.experimental_distribute_dataset(dataset)) summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) with strategy.scope(): logging.info('Building ResNet model') model = ub.models.wide_resnet_dropout( input_shape=(32, 32, 3), depth=28, width_multiplier=10, num_classes=num_classes, l2=FLAGS.l2, dropout_rate=FLAGS.dropout_rate, residual_dropout=FLAGS.residual_dropout, filterwise_dropout=FLAGS.filterwise_dropout) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Linearly scale learning rate and the decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * batch_size / 128 lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200 for start_epoch_str in FLAGS.lr_decay_epochs] lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule( steps_per_epoch, base_lr, decay_ratio=FLAGS.lr_decay_ratio, decay_epochs=lr_decay_epochs, warmup_epochs=FLAGS.lr_warmup_epochs) optimizer = tf.keras.optimizers.SGD(lr_schedule, momentum=1.0 - FLAGS.one_minus_momentum, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/loss': tf.keras.metrics.Mean(), 'train/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } if validation_dataset: metrics.update({ 'validation/negative_log_likelihood': tf.keras.metrics.Mean(), 'validation/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'validation/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), }) if FLAGS.corruptions_interval > 0: corrupt_metrics = {} for intensity in range(1, 6): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins)) checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] images = tf.tile(images, [FLAGS.num_dropout_samples_training, 1, 1, 1]) labels = tf.tile(labels, [FLAGS.num_dropout_samples_training]) with tf.GradientTape() as tape: logits = model(images, training=True) negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True)) l2_loss = sum(model.losses) loss = negative_log_likelihood + l2_loss # Scale the loss given the TPUStrategy will reduce sum all gradients. scaled_loss = loss / strategy.num_replicas_in_sync grads = tape.gradient(scaled_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) probs = tf.nn.softmax(logits) metrics['train/ece'].add_batch(probs, label=labels) metrics['train/loss'].update_state(loss) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/accuracy'].update_state(labels, logits) for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) @tf.function def test_step(iterator, dataset_split, dataset_name, num_steps): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] logits_list = [] for _ in range(FLAGS.num_dropout_samples): logits = model(images, training=False) logits_list.append(logits) # Logits dimension is (num_samples, batch_size, num_classes). logits_list = tf.stack(logits_list, axis=0) probs_list = tf.nn.softmax(logits_list) probs = tf.reduce_mean(probs_list, axis=0) labels_broadcasted = tf.broadcast_to( labels, [FLAGS.num_dropout_samples, labels.shape[0]]) log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy( labels_broadcasted, logits_list, from_logits=True) negative_log_likelihood = tf.reduce_mean( -tf.reduce_logsumexp(log_likelihoods, axis=[0]) + tf.math.log(float(FLAGS.num_dropout_samples))) if dataset_name == 'clean': metrics[ f'{dataset_split}/negative_log_likelihood'].update_state( negative_log_likelihood) metrics[f'{dataset_split}/accuracy'].update_state( labels, probs) metrics[f'{dataset_split}/ece'].add_batch(probs, label=labels) else: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state(negative_log_likelihood) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state(labels, probs) corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch( probs, label=labels) for _ in tf.range(tf.cast(num_steps, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()}) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) train_step(train_iterator) current_step = (epoch + 1) * steps_per_epoch max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) logging.info(message) if validation_dataset: validation_iterator = iter(validation_dataset) test_step(validation_iterator, 'validation', 'clean', steps_per_validation) datasets_to_evaluate = {'clean': test_datasets['clean']} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): test_iterator = iter(test_dataset) logging.info('Testing on dataset %s', dataset_name) logging.info('Starting to run eval at epoch: %s', epoch) test_start_time = time.time() test_step(test_iterator, 'test', dataset_name, steps_per_eval) ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size metrics['test/ms_per_example'].update_state(ms_per_example) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics( corrupt_metrics, corruption_types) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) total_results = { name: metric.result() for name, metric in metrics.items() } total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in metrics.values(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved last checkpoint to %s', final_checkpoint_name) with summary_writer.as_default(): hp.hparams({ 'base_learning_rate': FLAGS.base_learning_rate, 'one_minus_momentum': FLAGS.one_minus_momentum, 'l2': FLAGS.l2, 'dropout_rate': FLAGS.dropout_rate, 'num_dropout_samples': FLAGS.num_dropout_samples, 'num_dropout_samples_training': FLAGS.num_dropout_samples_training, })
def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) data_dir = utils.get_data_dir_from_flags(FLAGS) if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size batch_size = per_core_batch_size * FLAGS.num_cores check_bool = FLAGS.train_proportion > 0 and FLAGS.train_proportion <= 1 assert check_bool, 'Proportion of train set has to meet 0 < prop <= 1.' drop_remainder_validation = True if not FLAGS.use_gpu: # This has to be True for TPU traing, otherwise the batchsize of images in # the validation set can't be determined by TPU compile. assert drop_remainder_validation, 'drop_remainder must be True in TPU mode.' validation_percent = 1 - FLAGS.train_proportion train_dataset = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TRAIN, validation_percent=validation_percent).load(batch_size=batch_size) validation_dataset = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.VALIDATION, validation_percent=validation_percent, drop_remainder=drop_remainder_validation).load(batch_size=batch_size) validation_dataset = validation_dataset.repeat() clean_test_dataset = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TEST).load(batch_size=batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) validation_dataset = strategy.experimental_distribute_dataset( validation_dataset) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset), } if FLAGS.corruptions_interval > 0: if FLAGS.dataset == 'cifar100': data_dir = FLAGS.cifar100_c_path corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset) for corruption_type in corruption_types: for severity in range(1, 6): dataset = ub.datasets.get( f'{FLAGS.dataset}_corrupted', corruption_type=corruption_type, data_dir=data_dir, severity=severity, split=tfds.Split.TEST).load(batch_size=batch_size) test_datasets[f'{corruption_type}_{severity}'] = ( strategy.experimental_distribute_dataset(dataset)) ds_info = tfds.builder(FLAGS.dataset).info train_sample_size = ds_info.splits[ 'train'].num_examples * FLAGS.train_proportion steps_per_epoch = int(train_sample_size / batch_size) train_sample_size = int(train_sample_size) steps_per_eval = ds_info.splits['test'].num_examples // batch_size num_classes = ds_info.features['label'].num_classes summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) logging.info('Building Keras model.') depth = 28 width = 10 dict_ranges = {'min': FLAGS.min_l2_range, 'max': FLAGS.max_l2_range} ranges = [dict_ranges for _ in range(6)] # 6 independent l2 parameters model_config = { 'key_to_index': { 'input_conv_l2_kernel': 0, 'group_l2_kernel': 1, 'group_1_l2_kernel': 2, 'group_2_l2_kernel': 3, 'dense_l2_kernel': 4, 'dense_l2_bias': 5, }, 'ranges': ranges, 'test': None } lambdas_config = LambdaConfig(model_config['ranges'], model_config['key_to_index']) if FLAGS.e_body_hidden_units > 0: e_body_arch = '({},)'.format(FLAGS.e_body_hidden_units) else: e_body_arch = '()' e_shared_arch = '()' e_activation = 'tanh' filters_resnet = [16] for i in range(0, 3): # 3 groups of blocks filters_resnet.extend([16 * width * 2**i] * 9) # 9 layers in each block # e_head dim for conv2d is just the number of filters (only # kernel) and twice num of classes for the last dense layer (kernel + bias) e_head_dims = [x for x in filters_resnet] + [2 * num_classes] with strategy.scope(): e_models = e_factory( lambdas_config.input_shape, e_head_dims=e_head_dims, e_body_arch=eval(e_body_arch), # pylint: disable=eval-used e_shared_arch=eval(e_shared_arch), # pylint: disable=eval-used activation=e_activation, use_bias=FLAGS.e_model_use_bias, e_head_init=FLAGS.init_emodels_stddev) model = wide_resnet_hyperbatchensemble( input_shape=ds_info.features['image'].shape, depth=depth, width_multiplier=width, num_classes=num_classes, ensemble_size=FLAGS.ensemble_size, random_sign_init=FLAGS.random_sign_init, config=lambdas_config, e_models=e_models, l2_batchnorm_layer=FLAGS.l2_batchnorm, regularize_fast_weights=FLAGS.regularize_fast_weights, fast_weights_eq_contraint=FLAGS.fast_weights_eq_contraint, version=2) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # build hyper-batchensemble complete ------------------------- # Initialize Lambda distributions for tuning lambdas_mean = tf.reduce_mean( log_uniform_mean([lambdas_config.log_min, lambdas_config.log_max])) lambdas0 = tf.random.normal((FLAGS.ensemble_size, lambdas_config.dim), lambdas_mean, 0.1 * FLAGS.ens_init_delta_bounds) lower0 = lambdas0 - tf.constant(FLAGS.ens_init_delta_bounds) lower0 = tf.maximum(lower0, 1e-8) upper0 = lambdas0 + tf.constant(FLAGS.ens_init_delta_bounds) log_lower = tf.Variable(tf.math.log(lower0)) log_upper = tf.Variable(tf.math.log(upper0)) lambda_parameters = [log_lower, log_upper] # these variables are tuned clip_lambda_parameters(lambda_parameters, lambdas_config) # Optimizer settings to train model weights # Linearly scale learning rate and the decay epochs by vanilla settings. # Note: Here, we don't divide the epochs by 200 as for the other uncertainty # baselines. base_lr = FLAGS.base_learning_rate * batch_size / 128 lr_decay_epochs = [int(l) for l in FLAGS.lr_decay_epochs] lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule( steps_per_epoch, base_lr, decay_ratio=FLAGS.lr_decay_ratio, decay_epochs=lr_decay_epochs, warmup_epochs=FLAGS.lr_warmup_epochs) optimizer = tf.keras.optimizers.SGD(lr_schedule, momentum=1.0 - FLAGS.one_minus_momentum, nesterov=True) # tuner used for optimizing lambda_parameters tuner = tf.keras.optimizers.Adam(FLAGS.lr_tuning) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/loss': tf.keras.metrics.Mean(), 'train/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'train/disagreement': tf.keras.metrics.Mean(), 'train/average_kl': tf.keras.metrics.Mean(), 'train/cosine_similarity': tf.keras.metrics.Mean(), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/gibbs_nll': tf.keras.metrics.Mean(), 'test/gibbs_accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/disagreement': tf.keras.metrics.Mean(), 'test/average_kl': tf.keras.metrics.Mean(), 'test/cosine_similarity': tf.keras.metrics.Mean(), 'validation/loss': tf.keras.metrics.Mean(), 'validation/loss_entropy': tf.keras.metrics.Mean(), 'validation/loss_ce': tf.keras.metrics.Mean() } corrupt_metrics = {} for i in range(FLAGS.ensemble_size): metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean() metrics['test/accuracy_member_{}'.format(i)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) if FLAGS.corruptions_interval > 0: for intensity in range(1, 6): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins)) checkpoint = tf.train.Checkpoint(model=model, lambda_parameters=lambda_parameters, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint and FLAGS.restore_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) # generate lambdas lambdas = log_uniform_sample(per_core_batch_size, lambda_parameters) lambdas = tf.reshape(lambdas, (FLAGS.ensemble_size * per_core_batch_size, lambdas_config.dim)) with tf.GradientTape() as tape: logits = model([images, lambdas], training=True) if FLAGS.use_gibbs_ce: # Average of single model CEs # tiling of labels should be only done for Gibbs CE loss labels = tf.tile(labels, [FLAGS.ensemble_size]) negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True)) else: # Ensemble CE uses no tiling of the labels negative_log_likelihood = ensemble_crossentropy( labels, logits, FLAGS.ensemble_size) # Note: Divide l2_loss by sample_size (this differs from uncertainty_ # baselines implementation.) l2_loss = sum(model.losses) / train_sample_size loss = negative_log_likelihood + l2_loss # Scale the loss given the TPUStrategy will reduce sum all gradients. scaled_loss = loss / strategy.num_replicas_in_sync grads = tape.gradient(scaled_loss, model.trainable_variables) # Separate learning rate for fast weights. grads_and_vars = [] for grad, var in zip(grads, model.trainable_variables): if (('alpha' in var.name or 'gamma' in var.name) and 'batch_norm' not in var.name): grads_and_vars.append( (grad * FLAGS.fast_weight_lr_multiplier, var)) else: grads_and_vars.append((grad, var)) optimizer.apply_gradients(grads_and_vars) probs = tf.nn.softmax(logits) per_probs = tf.split(probs, num_or_size_splits=FLAGS.ensemble_size, axis=0) per_probs_stacked = tf.stack(per_probs, axis=0) metrics['train/ece'].add_batch(probs, label=labels) metrics['train/loss'].update_state(loss) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/accuracy'].update_state(labels, logits) diversity = rm.metrics.AveragePairwiseDiversity() diversity.add_batch(per_probs_stacked, num_models=FLAGS.ensemble_size) diversity_results = diversity.result() for k, v in diversity_results.items(): metrics['train/' + k].update_state(v) if grads_and_vars: grads, _ = zip(*grads_and_vars) strategy.run(step_fn, args=(next(iterator), )) @tf.function def tuning_step(iterator): """Tuning StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(lambda_parameters) # sample lambdas if FLAGS.sample_and_tune: lambdas = log_uniform_sample(per_core_batch_size, lambda_parameters) else: lambdas = log_uniform_mean(lambda_parameters) lambdas = tf.repeat(lambdas, per_core_batch_size, axis=0) lambdas = tf.reshape(lambdas, (FLAGS.ensemble_size * per_core_batch_size, lambdas_config.dim)) # ensemble CE logits = model([images, lambdas], training=False) ce = ensemble_crossentropy(labels, logits, FLAGS.ensemble_size) # entropy penalty for lambda distribution entropy = FLAGS.tau * log_uniform_entropy(lambda_parameters) loss = ce - entropy scaled_loss = loss / strategy.num_replicas_in_sync gradients = tape.gradient(loss, lambda_parameters) tuner.apply_gradients(zip(gradients, lambda_parameters)) metrics['validation/loss_ce'].update_state( ce / strategy.num_replicas_in_sync) metrics['validation/loss_entropy'].update_state( entropy / strategy.num_replicas_in_sync) metrics['validation/loss'].update_state(scaled_loss) strategy.run(step_fn, args=(next(iterator), )) @tf.function def test_step(iterator, dataset_name, num_eval_samples=0): """Evaluation StepFn.""" n_samples = num_eval_samples if num_eval_samples >= 0 else -num_eval_samples if num_eval_samples >= 0: # the +1 accounts for the fact that we add the mean of lambdas ensemble_size = FLAGS.ensemble_size * (1 + n_samples) else: ensemble_size = FLAGS.ensemble_size * n_samples def step_fn(inputs): """Per-Replica StepFn.""" # Note that we don't use tf.tile for labels here images = inputs['features'] labels = inputs['labels'] images = tf.tile(images, [ensemble_size, 1, 1, 1]) # get lambdas samples = log_uniform_sample(n_samples, lambda_parameters) if num_eval_samples >= 0: lambdas = log_uniform_mean(lambda_parameters) lambdas = tf.expand_dims(lambdas, 1) lambdas = tf.concat((lambdas, samples), 1) else: lambdas = samples # lambdas with shape (ens size, samples, dim of lambdas) rep_lambdas = tf.repeat(lambdas, per_core_batch_size, axis=1) rep_lambdas = tf.reshape(rep_lambdas, (ensemble_size * per_core_batch_size, -1)) # eval on testsets logits = model([images, rep_lambdas], training=False) probs = tf.nn.softmax(logits) per_probs = tf.split(probs, num_or_size_splits=ensemble_size, axis=0) # per member performance and gibbs performance (average per member perf) if dataset_name == 'clean': for i in range(FLAGS.ensemble_size): # we record the first sample of lambdas per batch-ens member first_member_index = i * (ensemble_size // FLAGS.ensemble_size) member_probs = per_probs[first_member_index] member_loss = tf.keras.losses.sparse_categorical_crossentropy( labels, member_probs) metrics['test/nll_member_{}'.format(i)].update_state( member_loss) metrics['test/accuracy_member_{}'.format(i)].update_state( labels, member_probs) labels_tile = tf.tile(labels, [ensemble_size]) metrics['test/gibbs_nll'].update_state( tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels_tile, logits, from_logits=True))) metrics['test/gibbs_accuracy'].update_state(labels_tile, probs) # ensemble performance negative_log_likelihood = ensemble_crossentropy( labels, logits, ensemble_size) probs = tf.reduce_mean(per_probs, axis=0) if dataset_name == 'clean': metrics['test/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['test/accuracy'].update_state(labels, probs) metrics['test/ece'].add_batch(probs, label=labels) else: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state(negative_log_likelihood) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state(labels, probs) corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch( probs, label=labels) if dataset_name == 'clean': per_probs_stacked = tf.stack(per_probs, axis=0) diversity = rm.metrics.AveragePairwiseDiversity() diversity.add_batch(per_probs_stacked, num_models=ensemble_size) diversity_results = diversity.result() for k, v in diversity_results.items(): metrics['test/' + k].update_state(v) strategy.run(step_fn, args=(next(iterator), )) logging.info('--- Starting training using %d examples. ---', train_sample_size) train_iterator = iter(train_dataset) validation_iterator = iter(validation_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) for step in range(steps_per_epoch): train_step(train_iterator) do_tuning = (epoch >= FLAGS.tuning_warmup_epochs) if do_tuning and ((step + 1) % FLAGS.tuning_every_x_step == 0): tuning_step(validation_iterator) # clip lambda parameters if outside of range clip_lambda_parameters(lambda_parameters, lambdas_config) current_step = epoch * steps_per_epoch + (step + 1) max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) if step % 20 == 0: logging.info(message) # evaluate on test data datasets_to_evaluate = {'clean': test_datasets['clean']} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): test_iterator = iter(test_dataset) logging.info('Testing on dataset %s', dataset_name) for step in range(steps_per_eval): if step % 20 == 0: logging.info('Starting to run eval step %s of epoch: %s', step, epoch) test_step(test_iterator, dataset_name, FLAGS.num_eval_samples) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics( corrupt_metrics, corruption_types) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Validation Loss: %.4f, CE: %.4f, Entropy: %.4f', metrics['validation/loss'].result(), metrics['validation/loss_ce'].result(), metrics['validation/loss_entropy'].result()) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) for i in range(FLAGS.ensemble_size): logging.info( 'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i, metrics['test/nll_member_{}'.format(i)].result(), metrics['test/accuracy_member_{}'.format(i)].result() * 100) total_results = { name: metric.result() for name, metric in metrics.items() } total_results.update({ name: metric.result() for name, metric in corrupt_metrics.items() }) total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in metrics.values(): metric.reset_states() # save checkpoint and lambdas config if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) lambdas_cf = lambdas_config.get_config() filepath = os.path.join(FLAGS.output_dir, 'lambdas_config.p') with tf.io.gfile.GFile(filepath, 'wb') as fp: pickle.dump(lambdas_cf, fp, protocol=pickle.HIGHEST_PROTOCOL) logging.info('Saved checkpoint to %s', checkpoint_name) with summary_writer.as_default(): hp.hparams({ 'base_learning_rate': FLAGS.base_learning_rate, 'one_minus_momentum': FLAGS.one_minus_momentum, 'l2': FLAGS.l2, 'random_sign_init': FLAGS.random_sign_init, 'fast_weight_lr_multiplier': FLAGS.fast_weight_lr_multiplier, })
def main(argv): del argv # unused arg if not FLAGS.use_gpu: raise ValueError('Only GPU is currently supported.') if FLAGS.num_cores > 1: raise ValueError('Only a single accelerator is currently supported.') tf.random.set_seed(FLAGS.seed) tf.io.gfile.makedirs(FLAGS.output_dir) ds_info = tfds.builder(FLAGS.dataset).info batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores steps_per_eval = ds_info.splits['test'].num_examples // batch_size num_classes = ds_info.features['label'].num_classes data_dir = utils.get_data_dir_from_flags(FLAGS) dataset = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TEST).load(batch_size=batch_size) validation_percent = 1. - FLAGS.train_proportion val_dataset = ub.datasets.get( dataset_name=FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.VALIDATION, validation_percent=validation_percent, drop_remainder=False).load(batch_size=batch_size) steps_per_val_eval = int(ds_info.splits['train'].num_examples * validation_percent) // batch_size test_datasets = {'clean': dataset} if FLAGS.dataset == 'cifar100': data_dir = FLAGS.cifar100_c_path corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset) for corruption_type in corruption_types: for severity in range(1, 6): dataset = ub.datasets.get( f'{FLAGS.dataset}_corrupted', corruption_type=corruption_type, data_dir=data_dir, severity=severity, split=tfds.Split.TEST).load(batch_size=batch_size) test_datasets[f'{corruption_type}_{severity}'] = dataset model = ub.models.wide_resnet(input_shape=ds_info.features['image'].shape, depth=28, width_multiplier=10, num_classes=num_classes, l2=0.) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Search for checkpoints ensemble_filenames = parse_checkpoint_dir(FLAGS.checkpoint_dir) model_pool_size = len(ensemble_filenames) logging.info('Model pool size: %s', model_pool_size) logging.info('Ensemble size: %s', FLAGS.ensemble_size) logging.info('Ensemble number of weights: %s', FLAGS.ensemble_size * model.count_params()) logging.info('Ensemble filenames: %s', str(ensemble_filenames)) checkpoint = tf.train.Checkpoint(model=model) # Compute the logits on the validation set val_logits, val_labels = [], [] for m, ensemble_filename in enumerate(ensemble_filenames): # Enforce memory clean-up tf.keras.backend.clear_session() checkpoint.restore(ensemble_filename) val_iterator = iter(val_dataset) val_logits_m = [] for _ in range(steps_per_val_eval): inputs = next(val_iterator) features = inputs['features'] labels = inputs['labels'] val_logits_m.append(model(features, training=False)) if m == 0: val_labels.append(labels) val_logits.append(tf.concat(val_logits_m, axis=0)) if m == 0: val_labels = tf.concat(val_labels, axis=0) percent = (m + 1.) / model_pool_size message = ('{:.1%} completion for prediction on validation set: ' 'model {:d}/{:d}.'.format(percent, m + 1, model_pool_size)) logging.info(message) selected_members, val_acc, val_nll = greedy_selection( val_logits, val_labels, FLAGS.ensemble_size, FLAGS.greedy_objective) unique_selected_members = list(set(selected_members)) message = ('Members selected by greedy procedure: {} (with {} unique ' 'member(s))\n\t{}').format( selected_members, len(unique_selected_members), [ensemble_filenames[i] for i in selected_members]) logging.info(message) val_metrics = { 'val/accuracy': tf.keras.metrics.Mean(), 'val/negative_log_likelihood': tf.keras.metrics.Mean() } val_metrics['val/accuracy'].update_state(val_acc) val_metrics['val/negative_log_likelihood'].update_state(val_nll) # Write model predictions to files. num_datasets = len(test_datasets) for m, member_id in enumerate(unique_selected_members): ensemble_filename = ensemble_filenames[member_id] checkpoint.restore(ensemble_filename) for n, (name, test_dataset) in enumerate(test_datasets.items()): filename = '{dataset}_{member}.npy'.format(dataset=name, member=member_id) filename = os.path.join(FLAGS.output_dir, filename) if not tf.io.gfile.exists(filename): logits = [] test_iterator = iter(test_dataset) for _ in range(steps_per_eval): features = next(test_iterator)['features'] # pytype: disable=unsupported-operands logits.append(model(features, training=False)) logits = tf.concat(logits, axis=0) with tf.io.gfile.GFile(filename, 'w') as f: np.save(f, logits.numpy()) numerator = m * num_datasets + (n + 1) denominator = len(unique_selected_members) * num_datasets percent = numerator / denominator message = ( '{:.1%} completion for prediction: ensemble member {:d}/{:d}. ' 'Dataset {:d}/{:d}'.format(percent, m + 1, len(unique_selected_members), n + 1, num_datasets)) logging.info(message) metrics = { 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/gibbs_cross_entropy': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } metrics.update(val_metrics) corrupt_metrics = {} for name in test_datasets: corrupt_metrics['test/nll_{}'.format(name)] = tf.keras.metrics.Mean() corrupt_metrics['test/accuracy_{}'.format(name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(name)] = ( rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins)) for i in range(len(unique_selected_members)): metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean() metrics['test/accuracy_member_{}'.format(i)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) test_diversity = { 'test/disagreement': tf.keras.metrics.Mean(), 'test/average_kl': tf.keras.metrics.Mean(), 'test/cosine_similarity': tf.keras.metrics.Mean(), } metrics.update(test_diversity) # Evaluate model predictions. for n, (name, test_dataset) in enumerate(test_datasets.items()): logits_dataset = [] for member_id in selected_members: filename = '{dataset}_{member}.npy'.format(dataset=name, member=member_id) filename = os.path.join(FLAGS.output_dir, filename) with tf.io.gfile.GFile(filename, 'rb') as f: logits_dataset.append(np.load(f)) logits_dataset = tf.convert_to_tensor(logits_dataset) test_iterator = iter(test_dataset) for step in range(steps_per_eval): labels = next(test_iterator)['labels'] # pytype: disable=unsupported-operands logits = logits_dataset[:, (step * batch_size):((step + 1) * batch_size)] labels = tf.cast(labels, tf.int32) negative_log_likelihood_metric = rm.metrics.EnsembleCrossEntropy() negative_log_likelihood_metric.add_batch(logits, labels=labels) negative_log_likelihood = list( negative_log_likelihood_metric.result().values())[0] per_probs = tf.nn.softmax(logits) probs = tf.reduce_mean(per_probs, axis=0) if name == 'clean': gibbs_ce_metric = rm.metrics.GibbsCrossEntropy() gibbs_ce_metric.add_batch(logits, labels=labels) gibbs_ce = list(gibbs_ce_metric.result().values())[0] metrics['test/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce) metrics['test/accuracy'].update_state(labels, probs) metrics['test/ece'].add_batch(probs, label=labels) # Attention must be paid to deal with duplicated members: # e.g., #. selected_members = [2, 7, 3, 3] # unique_selected_members = [2, 3, 7] # selected_members.index(3) --> 2 for member_id in unique_selected_members: i = selected_members.index(member_id) member_probs = per_probs[i] member_loss = tf.keras.losses.sparse_categorical_crossentropy( labels, member_probs) metrics['test/nll_member_{}'.format(i)].update_state( member_loss) metrics['test/accuracy_member_{}'.format(i)].update_state( labels, member_probs) diversity = rm.metrics.AveragePairwiseDiversity() diversity.add_batch(per_probs, num_models=len(per_probs)) diversity_results = diversity.result() for k, v in diversity_results.items(): test_diversity['test/' + k].update_state(v) else: corrupt_metrics['test/nll_{}'.format(name)].update_state( negative_log_likelihood) corrupt_metrics['test/accuracy_{}'.format(name)].update_state( labels, probs) corrupt_metrics['test/ece_{}'.format(name)].add_batch( probs, label=labels) message = ( '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format( (n + 1) / num_datasets, n + 1, num_datasets)) logging.info(message) corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics, corruption_types) total_results = {name: metric.result() for name, metric in metrics.items()} total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } logging.info('Metrics: %s', total_results)
def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) data_dir = utils.get_data_dir_from_flags(FLAGS) if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores if FLAGS.dataset == 'cifar10': dataset_builder_class = ub.datasets.Cifar10Dataset else: dataset_builder_class = ub.datasets.Cifar100Dataset train_builder = dataset_builder_class(data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TRAIN, use_bfloat16=FLAGS.use_bfloat16, validation_percent=1. - FLAGS.train_proportion) train_dataset = train_builder.load(batch_size=batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) validation_dataset = None steps_per_validation = 0 if FLAGS.train_proportion < 1.0: validation_builder = dataset_builder_class( data_dir=data_dir, split=tfds.Split.VALIDATION, use_bfloat16=FLAGS.use_bfloat16, validation_percent=1. - FLAGS.train_proportion) validation_dataset = validation_builder.load(batch_size=batch_size) validation_dataset = strategy.experimental_distribute_dataset( validation_dataset) steps_per_validation = validation_builder.num_examples // batch_size clean_test_dataset_builder = dataset_builder_class( data_dir=data_dir, split=tfds.Split.TEST, use_bfloat16=FLAGS.use_bfloat16) clean_test_dataset = clean_test_dataset_builder.load( batch_size=test_batch_size) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset), } steps_per_epoch = train_builder.num_examples // batch_size steps_per_eval = clean_test_dataset_builder.num_examples // batch_size num_classes = 100 if FLAGS.dataset == 'cifar100' else 10 if FLAGS.corruptions_interval > 0: if FLAGS.dataset == 'cifar10': load_c_dataset = utils.load_cifar10_c else: load_c_dataset = functools.partial(utils.load_cifar100_c, path=FLAGS.cifar100_c_path) corruption_types, max_intensity = utils.load_corrupted_test_info( FLAGS.dataset) for corruption in corruption_types: for intensity in range(1, max_intensity + 1): dataset = load_c_dataset(corruption_name=corruption, corruption_intensity=intensity, batch_size=test_batch_size, use_bfloat16=FLAGS.use_bfloat16) test_datasets['{0}_{1}'.format(corruption, intensity)] = ( strategy.experimental_distribute_dataset(dataset)) if FLAGS.use_bfloat16: policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') tf.keras.mixed_precision.experimental.set_policy(policy) summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) with strategy.scope(): logging.info('Building ResNet model') model = ub.models.wide_resnet_condconv( input_shape=(32, 32, 3), depth=28, width_multiplier=FLAGS.resnet_width_multiplier, num_classes=num_classes, num_experts=FLAGS.num_experts, per_core_batch_size=FLAGS.per_core_batch_size, use_cond_dense=FLAGS.use_cond_dense, reduce_dense_outputs=FLAGS.reduce_dense_outputs, cond_placement=FLAGS.cond_placement, routing_fn=FLAGS.routing_fn, normalize_routing=FLAGS.normalize_routing, normalize_dense_routing=FLAGS.normalize_dense_routing, top_k=FLAGS.top_k, routing_pooling=FLAGS.routing_pooling, l2=FLAGS.l2) # reuse_routing=FLAGS.reuse_routing, # shared_routing_type=FLAGS.shared_routing_type) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Linearly scale learning rate and the decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * batch_size / 128 lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200 for start_epoch_str in FLAGS.lr_decay_epochs] lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule( steps_per_epoch, base_lr, decay_ratio=FLAGS.lr_decay_ratio, decay_epochs=lr_decay_epochs, warmup_epochs=FLAGS.lr_warmup_epochs) optimizer = tf.keras.optimizers.SGD(lr_schedule, momentum=1.0 - FLAGS.one_minus_momentum, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/loss': tf.keras.metrics.Mean(), 'train/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } eval_dataset_splits = ['test'] if validation_dataset: metrics.update({ 'validation/negative_log_likelihood': tf.keras.metrics.Mean(), 'validation/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'validation/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), }) eval_dataset_splits += ['validation'] if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense: for dataset_split in eval_dataset_splits: metrics.update({ f'{dataset_split}/nll_poe': tf.keras.metrics.Mean(), f'{dataset_split}/nll_moe': tf.keras.metrics.Mean(), f'{dataset_split}/nll_unweighted_poe': tf.keras.metrics.Mean(), f'{dataset_split}/nll_unweighted_moe': tf.keras.metrics.Mean(), f'{dataset_split}/unweighted_gibbs_ce': tf.keras.metrics.Mean(), f'{dataset_split}/ece_unweighted_moe': rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins), f'{dataset_split}/accuracy_unweighted_moe': tf.keras.metrics.SparseCategoricalAccuracy(), f'{dataset_split}/ece_poe': rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins), f'{dataset_split}/accuracy_poe': tf.keras.metrics.SparseCategoricalAccuracy(), f'{dataset_split}/ece_unweighted_poe': rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins), f'{dataset_split}/accuracy_unweighted_poe': tf.keras.metrics.SparseCategoricalAccuracy(), }) for idx in range(FLAGS.num_experts): metrics[f'{dataset_split}/dense_routing_weight_{idx}'] = ( tf.keras.metrics.Mean()) metrics[ f'{dataset_split}/dense_routing_weight_normalized_{idx}'] = ( tf.keras.metrics.Mean()) if FLAGS.corruptions_interval > 0: corrupt_metrics = {} for intensity in range(1, max_intensity + 1): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins)) corrupt_metrics['test/nll_weighted_moe_{}'.format( dataset_name)] = (tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_weighted_moe_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_weighted_moe_{}'.format( dataset_name)] = (rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins)) checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch def _process_3d_logits(logits, routing_weights, labels): routing_weights_3d = tf.expand_dims(routing_weights, axis=-1) weighted_logits = tf.math.reduce_mean(routing_weights_3d * logits, axis=1) unweighted_logits = tf.math.reduce_mean(logits, axis=1) probs = tf.nn.softmax(logits) unweighted_probs = tf.math.reduce_mean(probs, axis=1) weighted_probs = tf.math.reduce_sum(routing_weights_3d * probs, axis=1) labels_broadcasted = tf.tile(tf.reshape(labels, (-1, 1)), (1, FLAGS.num_experts)) neg_log_likelihoods = tf.keras.losses.sparse_categorical_crossentropy( labels_broadcasted, logits, from_logits=True) unweighted_gibbs_ce = tf.math.reduce_mean(neg_log_likelihoods) weighted_gibbs_ce = tf.math.reduce_mean( tf.math.reduce_sum(routing_weights * neg_log_likelihoods, axis=1)) return { 'weighted_logits': weighted_logits, 'unweighted_logits': unweighted_logits, 'unweighted_probs': unweighted_probs, 'weighted_probs': weighted_probs, 'neg_log_likelihoods': neg_log_likelihoods, 'unweighted_gibbs_ce': unweighted_gibbs_ce, 'weighted_gibbs_ce': weighted_gibbs_ce } def _process_3d_logits_train(logits, routing_weights, labels): processing_results = _process_3d_logits(logits, routing_weights, labels) if FLAGS.loss == 'gibbs_ce': probs = processing_results['weighted_probs'] negative_log_likelihood = processing_results['weighted_gibbs_ce'] elif FLAGS.loss == 'unweighted_gibbs_ce': probs = processing_results['unweighted_probs'] negative_log_likelihood = processing_results['unweighted_gibbs_ce'] elif FLAGS.loss == 'moe': probs = processing_results['weighted_probs'] negative_log_likelihood = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, probs, from_logits=False)) elif FLAGS.loss == 'unweighted_moe': probs = processing_results['unweighted_probs'] negative_log_likelihood = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, probs, from_logits=False)) elif FLAGS.loss == 'poe': probs = tf.softmax(processing_results['weighted_logits']) negative_log_likelihood = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, processing_results['weighted_logits'], from_logits=True)) elif FLAGS.loss == 'unweighted_poe': probs = tf.softmax(processing_results['unweighted_logits']) negative_log_likelihood = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, processing_results['unweighted_logits'], from_logits=True)) return probs, negative_log_likelihood def _process_3d_logits_test(routing_weights, logits, labels): processing_results = _process_3d_logits(logits, routing_weights, labels) nll_poe = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, processing_results['weighted_logits'], from_logits=True)) nll_unweighted_poe = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, processing_results['unweighted_logits'], from_logits=True)) nll_moe = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, processing_results['weighted_probs'], from_logits=False)) nll_unweighted_moe = tf.math.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, processing_results['unweighted_probs'], from_logits=False)) return { 'nll_poe': nll_poe, 'nll_moe': nll_moe, 'nll_unweighted_poe': nll_unweighted_poe, 'nll_unweighted_moe': nll_unweighted_moe, 'unweighted_gibbs_ce': processing_results['unweighted_gibbs_ce'], 'weighted_gibbs_ce': processing_results['weighted_gibbs_ce'], 'weighted_probs': processing_results['weighted_probs'], 'unweighted_probs': processing_results['unweighted_probs'], 'weighted_logits': processing_results['weighted_logits'], 'unweighted_logits': processing_results['unweighted_logits'] } @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] with tf.GradientTape() as tape: logits = model(images, training=True) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) # if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense: if not isinstance(logits, (list, tuple)): raise ValueError('Logits are not a tuple.') # logits is a `Tensor` of shape [batch_size, num_experts, num_classes] logits, all_routing_weights = logits # routing_weights is a `Tensor` of shape [batch_size, num_experts] routing_weights = all_routing_weights[-1] if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense: probs, negative_log_likelihood = _process_3d_logits_train( logits, routing_weights, labels) else: probs = tf.nn.softmax(logits) # Prior to reduce_mean the NLLs are of the shape [batch, num_experts]. negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True)) l2_loss = sum(model.losses) loss = negative_log_likelihood + l2_loss # Scale the loss given the TPUStrategy will reduce sum all gradients. scaled_loss = loss / strategy.num_replicas_in_sync grads = tape.gradient(scaled_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) metrics['train/ece'].add_batch(probs, label=labels) metrics['train/loss'].update_state(loss) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/accuracy'].update_state(labels, probs) for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) @tf.function def test_step(iterator, dataset_split, dataset_name, num_steps): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] logits = model(images, training=False) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) if not isinstance(logits, (list, tuple)): raise ValueError('Logits not a tuple') # logits is a `Tensor` of shape [batch_size, num_experts, num_classes] # routing_weights is a `Tensor` of shape [batch_size, num_experts] logits, all_routing_weights = logits routing_weights = all_routing_weights[-1] if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense: results = _process_3d_logits_test(routing_weights, logits, labels) else: probs = tf.nn.softmax(logits) negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, probs)) if dataset_name == 'clean': if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense: metrics[f'{dataset_split}/nll_poe'].update_state( results['nll_poe']) metrics[f'{dataset_split}/nll_moe'].update_state( results['nll_moe']) metrics[ f'{dataset_split}/nll_unweighted_poe'].update_state( results['nll_unweighted_poe']) metrics[ f'{dataset_split}/nll_unweighted_moe'].update_state( results['nll_unweighted_moe']) metrics[ f'{dataset_split}/unweighted_gibbs_ce'].update_state( results['unweighted_gibbs_ce']) metrics[ f'{dataset_split}/negative_log_likelihood'].update_state( results['weighted_gibbs_ce']) metrics[f'{dataset_split}/ece'].add_batch( results['weighted_probs'], label=labels) metrics[f'{dataset_split}/accuracy'].update_state( labels, results['weighted_probs']) metrics[f'{dataset_split}/ece_unweighted_moe'].add_batch( results['unweighted_probs'], label=labels) metrics[ f'{dataset_split}/accuracy_unweighted_moe'].update_state( labels, results['unweighted_probs']) metrics[f'{dataset_split}/ece_poe'].add_batch( results['weighted_logits'], label=labels) metrics[f'{dataset_split}/accuracy_poe'].update_state( labels, results['weighted_logits']) metrics[f'{dataset_split}/ece_unweighted_poe'].add_batch( results['unweighted_logits'], label=labels) metrics[ f'{dataset_split}/accuracy_unweighted_poe'].update_state( labels, results['unweighted_logits']) # TODO(ghassen): summarize all routing weights not only last layer's. average_routing_weights = tf.math.reduce_mean( routing_weights, axis=0) routing_weights_sum = tf.math.reduce_sum( average_routing_weights) for idx in range(FLAGS.num_experts): metrics[ f'{dataset_split}/dense_routing_weight_{idx}'].update_state( average_routing_weights[idx]) key = f'{dataset_split}/dense_routing_weight_normalized_{idx}' metrics[key].update_state( average_routing_weights[idx] / routing_weights_sum) # TODO(ghassen): add more metrics for expert utilization, # load loss and importance/balance loss. else: metrics[ f'{dataset_split}/negative_log_likelihood'].update_state( negative_log_likelihood) metrics[f'{dataset_split}/accuracy'].update_state( labels, probs) metrics[f'{dataset_split}/ece'].add_batch(probs, label=labels) else: # TODO(ghassen): figure out how to aggregate probs for the OOD case. if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state( results['unweighted_gibbs_ce']) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state( labels, results['unweighted_probs']) corrupt_metrics['test/ece_{}'.format( dataset_name)].add_batch(results['unweighted_probs'], label=labels) corrupt_metrics['test/nll_weighted_moe{}'.format( dataset_name)].update_state( results['weighted_gibbs_ce']) corrupt_metrics['test/accuracy_weighted_moe_{}'.format( dataset_name)].update_state(labels, results['weighted_probs']) corrupt_metrics['test/ece_weighted_moe{}'.format( dataset_name)].add_batch(results['weighted_probs'], label=labels) else: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state(negative_log_likelihood) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state(labels, probs) corrupt_metrics['test/ece_{}'.format( dataset_name)].add_batch(probs, label=labels) for _ in tf.range(tf.cast(num_steps, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()}) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) train_step(train_iterator) current_step = (epoch + 1) * steps_per_epoch max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) logging.info(message) if validation_dataset: validation_iterator = iter(validation_dataset) test_step(validation_iterator, 'validation', 'clean', steps_per_validation) datasets_to_evaluate = {'clean': test_datasets['clean']} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): test_iterator = iter(test_dataset) logging.info('Testing on dataset %s', dataset_name) logging.info('Starting to run eval at epoch: %s', epoch) test_start_time = time.time() test_step(test_iterator, 'test', dataset_name, steps_per_eval) ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size metrics['test/ms_per_example'].update_state(ms_per_example) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics( corrupt_metrics, corruption_types, max_intensity) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) total_results = { name: metric.result() for name, metric in metrics.items() } total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in metrics.values(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved last checkpoint to %s', final_checkpoint_name) with summary_writer.as_default(): hp.hparams({ 'base_learning_rate': FLAGS.base_learning_rate, 'one_minus_momentum': FLAGS.one_minus_momentum, 'l2': FLAGS.l2, 'dropout_rate': FLAGS.dropout_rate, 'num_dropout_samples': FLAGS.num_dropout_samples, 'num_dropout_samples_training': FLAGS.num_dropout_samples_training, })
def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) # Split the seed into a 2-tuple, for passing into dataset builder. dataset_seed = (FLAGS.seed, FLAGS.seed + 1) data_dir = utils.get_data_dir_from_flags(FLAGS) if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores // FLAGS.num_dropout_samples_training) test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores num_classes = 10 if FLAGS.dataset == 'cifar10' else 100 aug_params = { 'augmix': FLAGS.augmix, 'aug_count': FLAGS.aug_count, 'augmix_depth': FLAGS.augmix_depth, 'augmix_prob_coeff': FLAGS.augmix_prob_coeff, 'augmix_width': FLAGS.augmix_width, 'ensemble_size': 1, 'mixup_alpha': FLAGS.mixup_alpha, } validation_proportion = 1. - FLAGS.train_proportion use_validation_set = validation_proportion > 0. if FLAGS.dataset == 'cifar10': dataset_builder_class = ub.datasets.Cifar10Dataset else: dataset_builder_class = ub.datasets.Cifar100Dataset train_dataset_builder = dataset_builder_class( data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TRAIN, use_bfloat16=FLAGS.use_bfloat16, aug_params=aug_params, validation_percent=validation_proportion, seed=dataset_seed) train_dataset = train_dataset_builder.load(batch_size=batch_size) train_sample_size = train_dataset_builder.num_examples if validation_proportion > 0.: validation_dataset_builder = dataset_builder_class( data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.VALIDATION, use_bfloat16=FLAGS.use_bfloat16, validation_percent=validation_proportion) validation_dataset = validation_dataset_builder.load( batch_size=batch_size) validation_dataset = strategy.experimental_distribute_dataset( validation_dataset) val_sample_size = validation_dataset_builder.num_examples steps_per_val = steps_per_epoch = int(val_sample_size / batch_size) clean_test_dataset_builder = dataset_builder_class( data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TEST, use_bfloat16=FLAGS.use_bfloat16) clean_test_dataset = clean_test_dataset_builder.load( batch_size=test_batch_size) steps_per_epoch = int(train_sample_size / batch_size) steps_per_epoch = train_dataset_builder.num_examples // batch_size steps_per_eval = clean_test_dataset_builder.num_examples // batch_size train_dataset = strategy.experimental_distribute_dataset(train_dataset) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset), } if FLAGS.corruptions_interval > 0: if FLAGS.dataset == 'cifar10': load_c_dataset = utils.load_cifar10_c else: load_c_dataset = functools.partial(utils.load_cifar100_c, path=FLAGS.cifar100_c_path) corruption_types, max_intensity = utils.load_corrupted_test_info( FLAGS.dataset) for corruption in corruption_types: for intensity in range(1, max_intensity + 1): dataset = load_c_dataset(corruption_name=corruption, corruption_intensity=intensity, batch_size=test_batch_size, data_dir=data_dir, download_data=FLAGS.download_data, use_bfloat16=FLAGS.use_bfloat16) test_datasets['{0}_{1}'.format(corruption, intensity)] = ( strategy.experimental_distribute_dataset(dataset)) if FLAGS.use_bfloat16: policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') tf.keras.mixed_precision.experimental.set_policy(policy) summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) with strategy.scope(): logging.info('Building ResNet model') if FLAGS.use_spec_norm: logging.info('Use Spectral Normalization with norm bound %.2f', FLAGS.spec_norm_bound) if FLAGS.use_gp_layer: logging.info('Use GP layer with hidden units %d', FLAGS.gp_hidden_dim) model = ub.models.wide_resnet_sngp( input_shape=(32, 32, 3), batch_size=batch_size, depth=28, width_multiplier=10, num_classes=num_classes, l2=FLAGS.l2, use_mc_dropout=FLAGS.use_mc_dropout, use_filterwise_dropout=FLAGS.use_filterwise_dropout, dropout_rate=FLAGS.dropout_rate, use_gp_layer=FLAGS.use_gp_layer, gp_input_dim=FLAGS.gp_input_dim, gp_hidden_dim=FLAGS.gp_hidden_dim, gp_scale=FLAGS.gp_scale, gp_bias=FLAGS.gp_bias, gp_input_normalization=FLAGS.gp_input_normalization, gp_random_feature_type=FLAGS.gp_random_feature_type, gp_cov_discount_factor=FLAGS.gp_cov_discount_factor, gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty, use_spec_norm=FLAGS.use_spec_norm, spec_norm_iteration=FLAGS.spec_norm_iteration, spec_norm_bound=FLAGS.spec_norm_bound) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Linearly scale learning rate and the decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * batch_size / 128 lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200 for start_epoch_str in FLAGS.lr_decay_epochs] lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule( steps_per_epoch, base_lr, decay_ratio=FLAGS.lr_decay_ratio, decay_epochs=lr_decay_epochs, warmup_epochs=FLAGS.lr_warmup_epochs) optimizer = tf.keras.optimizers.SGD(lr_schedule, momentum=1.0 - FLAGS.one_minus_momentum, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/loss': tf.keras.metrics.Mean(), 'train/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/stddev': tf.keras.metrics.Mean(), } if use_validation_set: metrics.update({ 'val/negative_log_likelihood': tf.keras.metrics.Mean(), 'val/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'val/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'val/stddev': tf.keras.metrics.Mean(), }) if FLAGS.corruptions_interval > 0: corrupt_metrics = {} for intensity in range(1, max_intensity + 1): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins)) corrupt_metrics['test/stddev_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch @tf.function def train_step(iterator, step): """Training StepFn.""" def step_fn(inputs, step): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] if tf.equal(step, 0) and FLAGS.gp_cov_discount_factor < 0: # Resetting covaraince estimator at the begining of a new epoch. model.layers[-1].reset_covariance_matrix() if FLAGS.augmix and FLAGS.aug_count >= 1: # Index 0 at augmix preprocessing is the unperturbed image. images = images[:, 1, ...] # This is for the case of combining AugMix and Mixup. if FLAGS.mixup_alpha > 0: labels = tf.split(labels, FLAGS.aug_count + 1, axis=0)[1] images = tf.tile(images, [FLAGS.num_dropout_samples_training, 1, 1, 1]) if FLAGS.mixup_alpha > 0: labels = tf.tile(labels, [FLAGS.num_dropout_samples_training, 1]) else: labels = tf.tile(labels, [FLAGS.num_dropout_samples_training]) with tf.GradientTape() as tape: logits = model(images, training=True) if isinstance(logits, (list, tuple)): # If model returns a tuple of (logits, covmat), extract logits logits, _ = logits if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) if FLAGS.mixup_alpha > 0: negative_log_likelihood = tf.reduce_mean( tf.keras.losses.categorical_crossentropy( labels, logits, from_logits=True)) else: negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True)) l2_loss = sum(model.losses) loss = negative_log_likelihood + l2_loss # Scale the loss given the TPUStrategy will reduce sum all gradients. scaled_loss = loss / strategy.num_replicas_in_sync grads = tape.gradient(scaled_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) probs = tf.nn.softmax(logits) if FLAGS.mixup_alpha > 0: labels = tf.argmax(labels, axis=-1) metrics['train/ece'].add_batch(probs, label=labels) metrics['train/loss'].update_state(loss) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/accuracy'].update_state(labels, logits) strategy.run(step_fn, args=(next(iterator), step)) @tf.function def test_step(iterator, dataset_name): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] logits_list = [] stddev_list = [] for _ in range(FLAGS.num_dropout_samples): logits = model(images, training=False) if isinstance(logits, (list, tuple)): # If model returns a tuple of (logits, covmat), extract both logits, covmat = logits else: covmat = tf.eye(FLAGS.per_core_batch_size) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) logits = ed.layers.utils.mean_field_logits( logits, covmat, mean_field_factor=FLAGS.gp_mean_field_factor) stddev = tf.sqrt(tf.linalg.diag_part(covmat)) stddev_list.append(stddev) logits_list.append(logits) # Logits dimension is (num_samples, batch_size, num_classes). logits_list = tf.stack(logits_list, axis=0) stddev_list = tf.stack(stddev_list, axis=0) stddev = tf.reduce_mean(stddev_list, axis=0) probs_list = tf.nn.softmax(logits_list) probs = tf.reduce_mean(probs_list, axis=0) labels_broadcasted = tf.broadcast_to( labels, [FLAGS.num_dropout_samples, labels.shape[0]]) log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy( labels_broadcasted, logits_list, from_logits=True) negative_log_likelihood = tf.reduce_mean( -tf.reduce_logsumexp(log_likelihoods, axis=[0]) + tf.math.log(float(FLAGS.num_dropout_samples))) if dataset_name == 'clean': metrics['test/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['test/accuracy'].update_state(labels, probs) metrics['test/ece'].add_batch(probs, label=labels) metrics['test/stddev'].update_state(stddev) elif dataset_name == 'val': metrics['val/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['val/accuracy'].update_state(labels, probs) metrics['val/ece'].add_batch(probs, label=labels) metrics['val/stddev'].update_state(stddev) else: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state(negative_log_likelihood) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state(labels, probs) corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch( probs, label=labels) corrupt_metrics['test/stddev_{}'.format( dataset_name)].update_state(stddev) for _ in tf.range(tf.cast(steps_per_eval, tf.int32)): strategy.run(step_fn, args=(next(iterator), )) metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()}) step_variable = tf.Variable(0, dtype=tf.int32) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) for step in range(steps_per_epoch): step_variable.assign(step) # Pass `step` as a tf.Variable to train_step to prevent the tf.function # train_step() re-compiling itself at each function call. train_step(train_iterator, step_variable) current_step = epoch * steps_per_epoch + (step + 1) max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) if step % 20 == 0: logging.info(message) datasets_to_evaluate = {'clean': test_datasets['clean']} if use_validation_set: datasets_to_evaluate['val'] = validation_dataset if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): test_iterator = iter(test_dataset) logging.info('Testing on dataset %s', dataset_name) steps_per_eval = steps_per_val if dataset_name == 'val' else steps_per_eval logging.info('Starting to run eval at epoch: %s', epoch) test_start_time = time.time() test_step(test_iterator, dataset_name) ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size metrics['test/ms_per_example'].update_state(ms_per_example) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics( corrupt_metrics, corruption_types, max_intensity) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) if use_validation_set: logging.info('Val NLL: %.4f, Accuracy: %.2f%%', metrics['val/negative_log_likelihood'].result(), metrics['val/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) total_results = { name: metric.result() for name, metric in metrics.items() } total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in metrics.values(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved last checkpoint to %s', final_checkpoint_name) final_save_name = os.path.join(FLAGS.output_dir, 'model') model.save(final_save_name) logging.info('Saved model to %s', final_save_name) with summary_writer.as_default(): hp.hparams({ 'base_learning_rate': FLAGS.base_learning_rate, 'one_minus_momentum': FLAGS.one_minus_momentum, 'l2': FLAGS.l2, 'gp_mean_field_factor': FLAGS.gp_mean_field_factor, })
def main(argv): del argv # unused arg if not FLAGS.use_gpu: raise ValueError('Only GPU is currently supported.') if FLAGS.num_cores > 1: raise ValueError('Only a single accelerator is currently supported.') tf.random.set_seed(FLAGS.seed) tf.io.gfile.makedirs(FLAGS.output_dir) ds_info = tfds.builder(FLAGS.dataset).info batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores steps_per_eval = ds_info.splits['test'].num_examples // batch_size num_classes = ds_info.features['label'].num_classes data_dir = utils.get_data_dir_from_flags(FLAGS) dataset = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TEST).load(batch_size=batch_size) test_datasets = {'clean': dataset} extra_kwargs = {} if FLAGS.dataset == 'cifar100': data_dir = FLAGS.cifar100_c_path corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset) for corruption_type in corruption_types: for severity in range(1, 6): dataset = ub.datasets.get( f'{FLAGS.dataset}_corrupted', corruption_type=corruption_type, data_dir=data_dir, severity=severity, split=tfds.Split.TEST, **extra_kwargs).load(batch_size=batch_size) test_datasets[f'{corruption_type}_{severity}'] = dataset model = ub.models.wide_resnet_sngp( input_shape=ds_info.features['image'].shape, batch_size=FLAGS.per_core_batch_size, depth=28, width_multiplier=10, num_classes=num_classes, l2=0., use_mc_dropout=FLAGS.use_mc_dropout, use_filterwise_dropout=FLAGS.use_filterwise_dropout, dropout_rate=FLAGS.dropout_rate, use_gp_layer=FLAGS.use_gp_layer, gp_input_dim=FLAGS.gp_input_dim, gp_hidden_dim=FLAGS.gp_hidden_dim, gp_scale=FLAGS.gp_scale, gp_bias=FLAGS.gp_bias, gp_input_normalization=FLAGS.gp_input_normalization, gp_random_feature_type=FLAGS.gp_random_feature_type, gp_cov_discount_factor=FLAGS.gp_cov_discount_factor, gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty, use_spec_norm=FLAGS.use_spec_norm, spec_norm_iteration=FLAGS.spec_norm_iteration, spec_norm_bound=FLAGS.spec_norm_bound) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Search for checkpoints from their index file; then remove the index suffix. ensemble_filenames = tf.io.gfile.glob( os.path.join(FLAGS.checkpoint_dir, '**/*.index')) ensemble_filenames = [filename[:-6] for filename in ensemble_filenames] ensemble_size = len(ensemble_filenames) logging.info('Ensemble size: %s', ensemble_size) logging.info('Ensemble number of weights: %s', ensemble_size * model.count_params()) logging.info('Ensemble filenames: %s', str(ensemble_filenames)) checkpoint = tf.train.Checkpoint(model=model) # Write model predictions to files. num_datasets = len(test_datasets) for m, ensemble_filename in enumerate(ensemble_filenames): checkpoint.restore(ensemble_filename) for n, (name, test_dataset) in enumerate(test_datasets.items()): filename = '{dataset}_{member}.npy'.format(dataset=name, member=m) filename = os.path.join(FLAGS.output_dir, filename) if not tf.io.gfile.exists(filename): logits = [] test_iterator = iter(test_dataset) for _ in range(steps_per_eval): features = next(test_iterator)['features'] # pytype: disable=unsupported-operands logits_member = model(features, training=False) if isinstance(logits_member, (list, tuple)): # If model returns a tuple of (logits, covmat), extract both logits_member, covmat_member = logits_member else: covmat_member = tf.eye(FLAGS.per_core_batch_size) logits_member = ed.layers.utils.mean_field_logits( logits_member, covmat_member, FLAGS.gp_mean_field_factor_ensemble) logits.append(logits_member) logits = tf.concat(logits, axis=0) with tf.io.gfile.GFile(filename, 'w') as f: np.save(f, logits.numpy()) percent = (m * num_datasets + (n + 1)) / (ensemble_size * num_datasets) message = ( '{:.1%} completion for prediction: ensemble member {:d}/{:d}. ' 'Dataset {:d}/{:d}'.format(percent, m + 1, ensemble_size, n + 1, num_datasets)) logging.info(message) metrics = { 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/gibbs_cross_entropy': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } corrupt_metrics = {} for name in test_datasets: corrupt_metrics['test/nll_{}'.format(name)] = tf.keras.metrics.Mean() corrupt_metrics['test/accuracy_{}'.format(name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(name)] = ( rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins)) # Evaluate model predictions. for n, (name, test_dataset) in enumerate(test_datasets.items()): logits_dataset = [] for m in range(ensemble_size): filename = '{dataset}_{member}.npy'.format(dataset=name, member=m) filename = os.path.join(FLAGS.output_dir, filename) with tf.io.gfile.GFile(filename, 'rb') as f: logits_dataset.append(np.load(f)) logits_dataset = tf.convert_to_tensor(logits_dataset) test_iterator = iter(test_dataset) for step in range(steps_per_eval): labels = next(test_iterator)['labels'] # pytype: disable=unsupported-operands logits = logits_dataset[:, (step * batch_size):((step + 1) * batch_size)] labels = tf.cast(labels, tf.int32) negative_log_likelihood_metric = rm.metrics.EnsembleCrossEntropy() negative_log_likelihood_metric.add_batch(logits, labels=labels) negative_log_likelihood = list( negative_log_likelihood_metric.result().values())[0] per_probs = tf.nn.softmax(logits) probs = tf.reduce_mean(per_probs, axis=0) if name == 'clean': gibbs_ce_metric = rm.metrics.GibbsCrossEntropy() gibbs_ce_metric.add_batch(logits, labels=labels) gibbs_ce = list(gibbs_ce_metric.result().values())[0] metrics['test/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce) metrics['test/accuracy'].update_state(labels, probs) metrics['test/ece'].add_batch(probs, label=labels) else: corrupt_metrics['test/nll_{}'.format(name)].update_state( negative_log_likelihood) corrupt_metrics['test/accuracy_{}'.format(name)].update_state( labels, probs) corrupt_metrics['test/ece_{}'.format(name)].add_batch( probs, label=labels) message = ( '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format( (n + 1) / num_datasets, n + 1, num_datasets)) logging.info(message) corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics, corruption_types) total_results = {name: metric.result() for name, metric in metrics.items()} total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } logging.info('Metrics: %s', total_results)