コード例 #1
0
ファイル: pen_uhmm2.py プロジェクト: tyliupku/bethe-min
def lbp_validate(corpus, model, helper, device):
    model.eval()
    K, M = args.K, helper.markov_order
    total_loss, nexamples = 0.0, 0
    for i in range(len(corpus)):
        batch = corpus[i].to(device)
        T, bsz = batch.size()
        if T <= 1:
            continue
        if T not in cache:
            edges, nodeidxs, ne = get_hmm_stuff(T, M, K)
            cache[T] = (edges, nodeidxs, ne)
        edges, nodeidxs, ne = cache[T]
        nedges = edges.size(0)
        edges, ne = edges.to(device), ne.view(1, -1).to(device)

        un_lpots = model.get_obs_lps(batch)  # bsz x T x K log unary potentials
        ed_lpots = model.get_edge_scores(edges,
                                         T)  # nedges x K*K log potentials

        exed_lpots = ed_lpots.view(nedges, 1, K, K)
        # get approximate unclamped marginals
        nodebs, facbs, _, _, _ = dolbp(exed_lpots,
                                       edges,
                                       niter=args.lbp_iter,
                                       renorm=True,
                                       randomize=args.randomize_lbp,
                                       tol=args.lbp_tol)
        xnodebs, xfacbs, _, _, _ = dolbp(exed_lpots.expand(nedges, bsz, K, K),
                                         edges,
                                         x=batch,
                                         emlps=un_lpots.transpose(0, 1),
                                         niter=args.lbp_iter,
                                         renorm=True,
                                         randomize=args.randomize_lbp,
                                         tol=args.lbp_tol)
        # reshape log unary marginals: T x bsz x K -> bsz x T x K
        tau_u = torch.stack([nodebs[t] for t in range(T)]).transpose(0, 1)
        taux_u = torch.stack([xnodebs[t] for t in range(T)]).transpose(0, 1)
        # reshape log fac marginals: nedges x bsz x K x K -> bsz x nedges x K x K
        tau_e = torch.stack([facbs[e] for e in range(nedges)]).transpose(0, 1)
        taux_e = torch.stack([xfacbs[e]
                              for e in range(nedges)]).transpose(0, 1)

        # exponentiate
        tau_u, tau_e = (tau_u.exp() + EPS).view(1,
                                                -1), (tau_e.exp() + EPS).view(
                                                    1, -1)
        taux_u, taux_e = (taux_u.exp() + EPS).view(
            bsz, -1), (taux_e.exp() + EPS).view(bsz, -1)

        fx, _, _, _ = bethe_fex(taux_u, taux_e, un_lpots.view(bsz, -1),
                                ed_lpots.view(1, -1).expand(bsz, -1),
                                ne.expand(bsz, -1))
        fz, _, _, _ = bethe_fez(tau_u, tau_e, ed_lpots.view(1, -1), ne)
        loss = fx - fz * bsz
        total_loss += loss.item()
        nexamples += bsz

    return total_loss, nexamples
コード例 #2
0
ファイル: pen_uhmm2.py プロジェクト: tyliupku/bethe-min
def validate_unsup_am(corpus, model, infnet, cache, penfunc, neginf, device,
                      args):
    model.eval()
    infnet.eval()
    K, M = args.K, args.markov_order
    total_out_loss, total_pen_loss, nexamples = 0.0, 0.0, 0

    for i in range(len(corpus)):
        batch = corpus[i].to(device)
        T, bsz = batch.size()
        if T <= 1:  # annoying
            continue
        if T not in cache:
            edges, nodeidxs, ne = get_hmm_stuff(T, M, K)
            cache[T] = (edges, nodeidxs, ne)
        edges, nodeidxs, ne = cache[T]
        edges = edges.to(device)  # symbolic edge representation
        ne, nodeidxs = ne.view(1, -1).to(device), nodeidxs.to(
            device)  # 1 x T*K, # T x maxne
        npenterms = (nodeidxs != 2 * edges.size(0)).sum().float()

        # maximize wrt rho
        ed_lpots = model.get_edge_scores(edges,
                                         T)  # nedges x K*K log potentials
        pred_rho = infnet.q(edges, T)

        un_lpots = model.get_obs_lps(batch)  # bsz x T x K log unary potentials
        pred_rho_x = infnet.qx(batch, edges, T)

        out_loss, open_loss = outer_loss(pred_rho_x,
                                         pred_rho,
                                         un_lpots.view(bsz, -1),
                                         ed_lpots.view(1, -1),
                                         nodeidxs,
                                         K,
                                         ne,
                                         neginf,
                                         penfunc=penfunc)
        total_out_loss += out_loss.item()
        total_pen_loss += 1 / npenterms * open_loss.item()
        nexamples += bsz

    return total_out_loss, total_pen_loss, nexamples
コード例 #3
0
ファイル: check_corr.py プロジェクト: tyliupku/bethe-min
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    torch.manual_seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    ntypes, max_verts, max_seqlen = 10002, 3, 30
    model = HybEdgeModel(ntypes, max_verts, args).to(device)
    if args.infarch == "rnnnode":
        infnet = RNodeInfNet(ntypes, max_seqlen, args).to(device)
    else:
        infnet = TNodeInfNet(ntypes, max_seqlen, args).to(device)

    T, M, K = 10, 3, 30
    edges, nodeidxs, ne = get_hmm_stuff(T, M, K)
    edges, ne = edges.to(device), ne.view(1, -1).to(device)
    nodeidxs = nodeidxs.to(device)
    npenterms = (nodeidxs != 2 * edges.size(0)).sum().float()
    nedges = edges.size(0)
    EPS = 1e-38
    neginf = torch.Tensor(1, 1, 1).fill_(-1e18).to(device)

    if args.penfunc == "l2":
        penfunc = lambda x, y: ((x - y) * (x - y)).sum(-1)
    elif args.penfunc == "l1":
        penfunc = lambda x, y: (x - y).abs().sum(-1)
    elif args.penfunc == "js":
        penfunc = lambda x, y: 0.5 * (batch_kl(x, y) + batch_kl(y, x))
    elif args.penfunc == "kl1":
        penfunc = lambda x, y: batch_kl(x, y)
コード例 #4
0
ファイル: pen_uhmm2.py プロジェクト: tyliupku/bethe-min
def main(args, helper, cache, max_seqlen, max_verts, ntypes, trbatches,
         valbatches):
    print("main args", args)
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        if not args.cuda:
            print(
                "WARNING: You have a CUDA device, so you should probably run with --cuda"
            )
    device = torch.device("cuda" if args.cuda else "cpu")

    if args.infarch == "rnnnode":
        infctor = RNodeInfNet
    else:
        infctor = TNodeInfNet

    model = HybEdgeModel(ntypes, max_verts, args).to(device)
    if "exact" not in args.loss:
        infnet = infctor(ntypes, max_seqlen, args).to(device)

    bestmodel = HybEdgeModel(ntypes, max_verts, args)
    if "exact" not in args.loss:
        bestinfnet = infctor(ntypes, max_seqlen, args)
    else:
        bestinfnet = None

    if args.penfunc == "l2":
        penfunc = lambda x, y: ((x - y) * (x - y)).sum(-1)
    elif args.penfunc == "l1":
        penfunc = lambda x, y: (x - y).abs().sum(-1)
    elif args.penfunc == "js":
        penfunc = lambda x, y: 0.5 * (batch_kl(x, y) + batch_kl(y, x))
    elif args.penfunc == "kl1":
        penfunc = lambda x, y: batch_kl(x, y)
    elif args.penfunc == "kl2":
        penfunc = lambda x, y: batch_kl(y, x)
    else:
        penfunc = None

    neginf = torch.Tensor(1, 1, 1).fill_(-1e18).to(device)

    best_loss, prev_loss = float("inf"), float("inf")
    lrdecay, pendecay = False, False
    if "exact" in args.loss:
        if args.optalg == "sgd":
            popt1 = torch.optim.SGD(model.parameters(), lr=args.lr)
        else:
            popt1 = torch.optim.Adam(model.parameters(), lr=args.lr)
    else:
        if args.optalg == "sgd":
            popt1 = torch.optim.SGD(model.parameters(), lr=args.lr)
            popt2 = torch.optim.SGD(infnet.parameters(), lr=args.ilr)
        else:
            popt1 = torch.optim.Adam(model.parameters(), lr=args.lr)
            popt2 = torch.optim.Adam(infnet.parameters(), lr=args.ilr)

    if args.check_corr:
        from utils import corr
        # pick a graph to check
        T, K = 10, args.K
        edges, nodeidxs, ne = get_hmm_stuff(T, args.markov_order, K)
        edges, ne = edges.to(device), ne.view(1, -1).to(device)
        nodeidxs = nodeidxs.to(device)
        npenterms = (nodeidxs != 2 * edges.size(0)).sum().float()
        nedges = edges.size(0)

        with torch.no_grad():
            #un_lpots = model.get_obs_lps(batch) # bsz x T x K log unary potentials
            ed_lpots = model.get_edge_scores(edges,
                                             T)  # nedges x K*K log potentials

            exed_lpots = ed_lpots.view(nedges, 1, K, K)
            # get approximate unclamped marginals
            nodebs, facbs, _, _, _ = dolbp(exed_lpots,
                                           edges,
                                           niter=args.lbp_iter,
                                           renorm=True,
                                           randomize=args.randomize_lbp,
                                           tol=args.lbp_tol)

            tau_u = torch.stack([nodebs[t]
                                 for t in range(T)]).transpose(0,
                                                               1)  # 1 x T x K
            tau_e = torch.stack([facbs[e] for e in range(nedges)
                                 ]).transpose(0, 1)  # 1 x nedge x K x K
            tau_u, tau_e = (tau_u.exp() + EPS), (tau_e.exp() + EPS)

        for i in range(args.z_iter):
            with torch.no_grad(
            ):  # these functions are used in calc'ing the loss below too
                pred_rho = infnet.q(edges, T)  # nedges x K^2 logits
                # should be 1 x T x K and 1 x nedges x K^2
                predtau_u, predtau_e, _ = get_taus_and_pens(pred_rho,
                                                            nodeidxs,
                                                            K,
                                                            neginf,
                                                            penfunc=penfunc)
                predtau_u, predtau_e = predtau_u.exp() + EPS, predtau_e.exp(
                ) + EPS

            # i guess we'll just pick one entry from each
            un_margs = tau_u[0][:, 0]  # T
            bin_margs = tau_e[0][:, K - 1, K - 1]  # nedges
            pred_un_margs = predtau_u[0][:, 0]  # T
            pred_bin_margs = predtau_e[0].view(nedges, K, K)[:, K - 1,
                                                             K - 1]  # nedges
            print(
                i, "unary corr: %.4f, binary corr: %.4f" % (corr(
                    un_margs, pred_un_margs), corr(bin_margs, pred_bin_margs)))

            popt2.zero_grad()
            pred_rho = infnet.q(edges, T)  # nedges x K^2 logits
            in_loss, ipen_loss = inner_lossz(pred_rho.view(1, -1),
                                             ed_lpots.view(1, -1), nodeidxs, K,
                                             ne, neginf, penfunc)
            in_loss = in_loss + args.pen_mult / npenterms * ipen_loss
            print("in_loss", in_loss.item())
            in_loss.backward()
            clip_opt_params(popt2, args.clip)
            popt2.step()
        exit()

    bad_epochs = -1
    for ep in range(args.epochs):
        if args.loss == "exact":
            ll, ntokes = exact_train(trbatches, model, popt1, helper, device,
                                     args)
            print("Epoch {:3d} | train tru-ppl {:8.3f}".format(
                ep, math.exp(-ll / ntokes)))
            with torch.no_grad():
                vll, vntokes = exact_validate(valbatches, model, helper,
                                              device)
                print("Epoch {:3d} | val tru-ppl {:8.3f}".format(
                    ep, math.exp(-vll / vntokes)))
                # if ep == 4 and math.exp(-vll/vntokes) >= 280:
                #     break
            voloss = -vll
        elif args.loss == "lbp":
            oloss, nex = lbp_train(trbatches, model, popt1, helper, device,
                                   args)
            print("Epoch {:3d} | train out_loss {:8.3f}".format(
                ep, oloss / nex))
            with torch.no_grad():
                voloss, vnex = lbp_validate(valbatches, model, helper, device)
                print("Epoch {:3d} | val out_loss {:8.3f} ".format(
                    ep, voloss / vnex))
        else:  # infnet
            oloss, iloss, ploss, nex = train_unsup_am(trbatches, model, infnet,
                                                      popt1, popt2, cache,
                                                      penfunc, neginf, device,
                                                      args)
            print("Epoch {:3d} | train out_loss {:.3f} | train in_loss {:.3f}".
                  format(ep, oloss / nex, iloss / nex))

            with torch.no_grad():
                voloss, vploss, vnex = validate_unsup_am(
                    valbatches, model, infnet, cache, penfunc, neginf, device,
                    args)
                print(
                    "Epoch {:3d} | val out_loss {:.3f} | val barr_loss {:.3f}".
                    format(ep, voloss / vnex, vploss / vnex))

        if args.loss != "exact":
            with torch.no_grad():
                # trull, ntokes = exact_validate(trbatches, model, helper, device)
                # print("Epoch {:3d} | train tru-ppl {:.3f}".format(
                #     ep, math.exp(-trull/ntokes)))

                vll, vntokes = exact_validate(valbatches, model, helper,
                                              device)
                print("Epoch {:3d} | val tru-ppl {:.3f}".format(
                    ep, math.exp(-vll / vntokes)))
                voloss = -vll

            # trppl = math.exp(-trull/ntokes)
            # if (ep == 0 and  trppl > 3000) or (ep > 0 and trppl > 1000):
            #     break

        if voloss < best_loss:
            best_loss = voloss
            bad_epochs = -1
            print("updating best model")
            bestmodel.load_state_dict(model.state_dict())
            if bestinfnet is not None:
                bestinfnet.load_state_dict(infnet.state_dict())
            if len(args.save) > 0 and not args.grid:
                print("saving model to", args.save)
                torch.save(
                    {
                        "opt":
                        args,
                        "mod_sd":
                        bestmodel.state_dict(),
                        "inf_sd":
                        bestinfnet.state_dict()
                        if bestinfnet is not None else None,
                        "bestloss":
                        bestloss
                    }, args.save)
        if (voloss >= prev_loss or lrdecay) and args.optalg == "sgd":
            for group in popt1.param_groups:
                group['lr'] *= args.decay
            for group in popt2.param_groups:
                group['lr'] *= args.decay
            #decay = True
        if (voloss >= prev_loss or pendecay):
            args.pen_mult *= args.pendecay
            print("pen_mult now", args.pen_mult)
            pendecay = True

        prev_loss = voloss
        if ep >= 2 and math.exp(best_loss / vntokes) > 650:
            break
        print("")
        bad_epochs += 1
        if bad_epochs >= 5:
            break
        if args.reset_adam:  #bad_epochs == 1:
            print("resetting adam...")
            for group in popt2.param_groups:
                group['lr'] *= args.decay  # not really decay
        # if args.reset_adam and ep == 1: #bad_epochs == 1:
        #     print("resetting adam...")
        #     popt2 = torch.optim.Adam(infnet.parameters(), lr=args.ilr)

    return bestmodel, bestinfnet, best_loss
コード例 #5
0
ファイル: pen_uhmm2.py プロジェクト: tyliupku/bethe-min
def lbp_train(corpus, model, popt, helper, device, args):
    model.train()
    K, M = args.K, helper.markov_order
    total_loss, nexamples = 0.0, 0
    niter, nxiter = 0, 0
    perm = torch.randperm(len(corpus))
    for i, idx in enumerate(perm):
        popt.zero_grad()
        batch = corpus[idx.item()].to(device)
        T, bsz = batch.size()
        # if T <= 1 or (M == 3 and T <= 3): # annoying
        #     continue
        if T <= 1:
            continue
        if T not in cache:
            edges, nodeidxs, ne = get_hmm_stuff(T, M, K)
            cache[T] = (edges, nodeidxs, ne)
        edges, nodeidxs, ne = cache[T]
        nedges = edges.size(0)
        edges, ne = edges.to(device), ne.view(1, -1).to(device)

        un_lpots = model.get_obs_lps(batch)  # bsz x T x K log unary potentials
        ed_lpots = model.get_edge_scores(edges,
                                         T)  # nedges x K*K log potentials

        with torch.no_grad():
            exed_lpots = ed_lpots.view(nedges, 1, K, K)
            # get approximate unclamped marginals
            nodebs, facbs, ii, _, _ = dolbp(exed_lpots,
                                            edges,
                                            niter=args.lbp_iter,
                                            renorm=True,
                                            randomize=args.randomize_lbp,
                                            tol=args.lbp_tol)
            xnodebs, xfacbs, iix, _, _ = dolbp(exed_lpots.expand(
                nedges, bsz, K, K),
                                               edges,
                                               x=batch,
                                               emlps=un_lpots.transpose(0, 1),
                                               niter=args.lbp_iter,
                                               renorm=True,
                                               randomize=args.randomize_lbp,
                                               tol=args.lbp_tol)
            niter += ii
            nxiter += iix
            # reshape log unary marginals: T x bsz x K -> bsz x T x K
            tau_u = torch.stack([nodebs[t] for t in range(T)]).transpose(0, 1)
            taux_u = torch.stack([xnodebs[t]
                                  for t in range(T)]).transpose(0, 1)
            # reshape log fac marginals: nedges x bsz x K x K -> bsz x nedges x K x K
            tau_e = torch.stack([facbs[e]
                                 for e in range(nedges)]).transpose(0, 1)
            taux_e = torch.stack([xfacbs[e]
                                  for e in range(nedges)]).transpose(0, 1)

            # exponentiate
            tau_u, tau_e = (tau_u.exp() + EPS).view(1, -1), (tau_e.exp() +
                                                             EPS).view(1, -1)
            taux_u, taux_e = (taux_u.exp() + EPS).view(
                bsz, -1), (taux_e.exp() + EPS).view(bsz, -1)

        fx, _, _, _ = bethe_fex(taux_u, taux_e, un_lpots.view(bsz, -1),
                                ed_lpots.view(1, -1).expand(bsz, -1),
                                ne.expand(bsz, -1))
        fz, _, _, _ = bethe_fez(tau_u, tau_e, ed_lpots.view(1, -1), ne)
        loss = fx - fz * bsz
        total_loss += loss.item()
        loss.div(bsz).backward()
        clip_opt_params(popt, args.clip)
        popt.step()
        nexamples += bsz

        if (i + 1) % args.log_interval == 0:
            print(
                "{:5d}/{:5d} | its {:3.2f}/{:3.2f} | out_loss {:8.3f}".format(
                    i + 1, perm.size(0), niter / (i + 1), nxiter / (i + 1),
                    total_loss / nexamples))

    return total_loss, nexamples
コード例 #6
0
ファイル: pen_uhmm2.py プロジェクト: tyliupku/bethe-min
def train_unsup_am(corpus, model, infnet, moptim, ioptim, cache, penfunc,
                   neginf, device, args):
    """
    opt is just gonna be for everyone
    """
    model.train()
    infnet.train()
    K, M = args.K, args.markov_order
    total_out_loss, total_in_loss, nexamples = 0.0, 0.0, 0
    total_pen_loss = 0.0
    perm = torch.randperm(len(corpus))
    for i, idx in enumerate(perm):
        batch = corpus[idx.item()].to(device)
        T, bsz = batch.size()
        if T <= 1:  # annoying
            continue
        if T not in cache:
            edges, nodeidxs, ne = get_hmm_stuff(T, M, K)
            cache[T] = (edges, nodeidxs, ne)
        edges, nodeidxs, ne = cache[T]
        edges = edges.to(device)  # symbolic edge representation
        ne, nodeidxs = ne.view(1, -1).to(device), nodeidxs.to(
            device)  # 1 x T*K, # T x maxne
        npenterms = (nodeidxs != 2 * edges.size(0)).sum().float()

        # maximize wrt rho
        with torch.no_grad():
            ed_lpots = model.get_edge_scores(edges,
                                             T)  # nedges x K*K log potentials

        # if args.reset_adam:
        #     ioptim = torch.optim.Adam(infnet.parameters(), lr=args.ilr)

        for _ in range(args.z_iter):
            ioptim.zero_grad()
            pred_rho = infnet.q(edges, T)  # nedges x K^2 logits
            in_loss, ipen_loss = inner_lossz(pred_rho.view(1, -1),
                                             ed_lpots.view(1, -1), nodeidxs, K,
                                             ne, neginf, penfunc)
            total_in_loss += in_loss.item() * bsz
            total_pen_loss += args.pen_mult / npenterms * ipen_loss.item(
            ) * bsz
            in_loss = in_loss + args.pen_mult / npenterms * ipen_loss
            in_loss.backward()
            clip_opt_params(ioptim, args.clip)
            ioptim.step()

        pred_rho = pred_rho.detach()

        if args.loss == "alt3":
            # min wrt rho_x
            with torch.no_grad():
                un_lpots = model.get_obs_lps(
                    batch)  # bsz x T x K log unary potentials

            for _ in range(args.zx_iter):
                ioptim.zero_grad()
                pred_rho_x = infnet.qx(batch, edges, T)
                out_loss1, open_loss1 = inner_lossx(
                    pred_rho_x, un_lpots.view(bsz, -1),
                    ed_lpots.view(1, -1).expand(bsz, -1), nodeidxs, K,
                    ne.expand(bsz, -1), neginf, penfunc)
                out_loss1 = out_loss1 + args.pen_mult / npenterms * open_loss1
                total_pen_loss += args.pen_mult / npenterms * open_loss1.item()
                out_loss1.div(bsz).backward()
                clip_opt_params(ioptim, args.clip)
                ioptim.step()
            pred_rho_x = pred_rho_x.detach()

        # min wrt params
        moptim.zero_grad()
        # even tho these don't change we needa do it again
        un_lpots = model.get_obs_lps(batch)  # bsz x T x K log unary potentials
        ed_lpots = model.get_edge_scores(edges,
                                         T)  # nedges x K*K log potentials

        if args.loss != "alt3":  # jointly minimizing over rho_x
            pred_rho_x = infnet.qx(batch, edges, T)
            openfunc = penfunc
        else:
            openfunc = None

        out_loss, open_loss = outer_loss(pred_rho_x,
                                         pred_rho,
                                         un_lpots.view(bsz, -1),
                                         ed_lpots.view(1, -1),
                                         nodeidxs,
                                         K,
                                         ne,
                                         neginf,
                                         penfunc=openfunc)
        total_out_loss += out_loss.item()
        if args.loss != "alt3":
            total_pen_loss += args.pen_mult / npenterms * open_loss
        out_loss = out_loss + args.pen_mult / npenterms * open_loss
        out_loss.div(bsz).backward()
        clip_opt_params(moptim, args.clip)
        moptim.step()
        nexamples += bsz

        if (i + 1) % args.log_interval == 0:
            print(
                "{:5d}/{:5d} | out_loss {:8.5f} | in_loss {:8.5f} | pen_loss {:8.6f}"
                .format(i + 1, perm.size(0), total_out_loss / nexamples,
                        total_in_loss / nexamples,
                        total_pen_loss / (nexamples * args.pen_mult)))

    return total_out_loss, total_in_loss, total_pen_loss, nexamples