コード例 #1
0
def main():
    global_config = config['Global']

    device = torch.device('cpu')
    if global_config['use_gpu'] and torch.cuda.is_available():
        device = torch.device('cuda')
    logger.info('使用设备:{}'.format(device))

    logger.info('模型信息:{}'.format(config['Architecture']))
    model = build_model(config['Architecture'])
    model.to(device)

    logger.info('加载预训练模型:{}'.format(global_config['pretrained_model']))
    state_dict = torch.load(global_config['pretrained_model'])
    model.load_state_dict(state_dict)

    post_process_class = build_post_process(config['PostProcess'])

    ops = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == "KeepKeys":
            op[op_name]['keep_keys'] = ['image', 'shape']
        ops.append(op)
    transforms = create_transformers(ops)

    save_res_path = global_config['save_res_path']
    save_dir = os.path.dirname(save_res_path)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    model.eval()
    with open(save_res_path, 'wb') as fout:
        for file in get_img_list(global_config['infer_img']):
            logger.info(f"测试图像:{file}")
            data = {'image': file}
            batch = transforms(data)

            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)
            images = torch.from_numpy(images).to(device)
            preds = model(images)
            post_result = post_process_class(preds, shape_list)
            boxes = post_result[0]['points']

            dt_boxes_json = []
            for box in boxes:
                tmp_json = {"transcription": ""}
                tmp_json['points'] = box.tolist()
                dt_boxes_json.append(tmp_json)
            otstr = file + "\t" + json.dumps(dt_boxes_json) + '\n'
            fout.write(otstr.encode())
            src_img = cv.imread(file)
            draw_det_res(boxes, save_dir, src_img, file)
        logger.info("结果已保存!")
コード例 #2
0
ファイル: __init__.py プロジェクト: TheRinger/ImageScraper
def console_main():
    URL, no_to_download, format_list, download_path, max_filesize, dump_urls, use_ghost = get_arguments(
    )
    print "\n ImageScraper\n ============\n Requesting page....\n"

    page_html, page_url = get_html(URL, use_ghost)
    images = get_img_list(page_html, page_url, format_list)

    if len(images) == 0:
        sys.exit("Sorry, no images found.")
    if no_to_download == 0:
        no_to_download = len(images)

    print "Found %s images: " % len(images)

    process_download_path(download_path)

    for img_url in images:
        if dump_urls:
            print img_url

    count = 0
    percent = 0.0
    failed = 0
    over_max_filesize = 0
    widgets = [
        'Progress: ',
        Percentage(), ' ',
        Bar(marker=RotatingMarker()), ' ',
        ETA(), ' ',
        FileTransferSpeed()
    ]
    pbar = ProgressBar(widgets=widgets, maxval=100).start()

    for img_url in images:
        flag, size_flag = download_image(img_url, download_path, max_filesize)
        if not flag:
            if not size_flag:
                failed += 1
            else:
                over_max_filesize += 1
        count += 1
        percent = percent + 100.0 / no_to_download
        pbar.update(percent % 100)
        if count == no_to_download:
            break

    pbar.finish()
    print "\nDone!\nDownloaded %s images" % (count - failed -
                                             over_max_filesize)
    return
コード例 #3
0
ファイル: rec_infer.py プロジェクト: ZhenqiSong/OCR_Pytorch
def main():
    global_config = config['Global']

    device = torch.device('cpu')
    if global_config['use_gpu'] is True and torch.cuda.is_available():
        device = torch.device('cuda')
    logger.info('使用设备:{}'.format(device))

    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    if hasattr(post_process_class, 'character'):
        config['Architecture']["Head"]['out_channels'] = len(
            getattr(post_process_class, 'character'))
    logger.info('构建模型,字典包含{}个字'.format(
        config['Architecture']["Head"]['out_channels']))
    logger.info('模型结构:{}'.format(config['Architecture']))
    model = build_model(config['Architecture'])
    model.to(device)

    logger.info('加载预训练模型 {}...'.format(global_config['pretrained_model']))
    state_dict = torch.load(global_config['pretrained_model'])
    model.load_state_dict(state_dict)

    ops = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
        elif op_name == 'KeepKeys':
            op[op_name]['keep_keys'] = ['image']
        ops.append(op)
    global_config['infer_mode'] = True
    transforms = create_transformers(ops, global_config)

    model.eval()
    for file in get_img_list(config['Global']['infer_img']):
        logger.info('输入图像:{}'.format(file))
        data = {'image': file}
        batch = transforms(data)

        images = torch.from_numpy(batch[0]).to(device)
        images = images.unsqueeze(0)
        preds = model(images)
        post_result = post_process_class(preds)
        logger.info("result: {}".format(post_result))
コード例 #4
0
def run():
    data_dir = 'dataset'
    data_names = sorted(os.listdir(data_dir))

    try:
        for data_name in data_names:
            tracker = KernelizedCorrelationFilter(correlation_type='gaussian', feature='deep')

            data_path = join(data_dir, data_name)
            gts = get_ground_truthes(data_path)

            img_dir = os.path.join(data_path, 'img')
            frame_list = get_img_list(img_dir)
            frame_list.sort()
            poses = tracker.start(init_gt=gts[0], show=True, frame_list=frame_list)
            print(poses)

    except Exception as e:
        print(e)
コード例 #5
0
ファイル: dataset.py プロジェクト: zengchan/ResNet50-Unet
    def __init__(self, path, transform=None, mode='train', val_path=None):
        self.img_path = path + 'case/'
        self.mask_path = path + 'mask/'
        self.transform = transform
        self.mode = mode
        if self.mode == 'train':
            if not (os.path.isfile(path + 'train.txt')):
                utils.get_img_list(path, 'train')
            with open(path + 'train.txt', 'r') as f_train:
                log = f_train.readlines()
        elif self.mode == 'validation':
            self.val_path = val_path
            if not (os.path.isfile(path + 'val_case.txt')):
                utils.get_img_list(path, 'val', val_path=val_path)
            with open(val_path + 'val.txt', 'r') as f_val:
                log = f_val.readlines()
        elif self.mode == 'test':
            if not (os.path.isfile(path + 'test.txt')):
                utils.get_img_list(path, 'test')
            with open(path + 'test.txt', 'r') as f_test:
                log = f_test.readlines()

        self.log = log
コード例 #6
0
def gen_img():
    while True:
        frame = get_img_list()
        yield (b'--frame\r\n'
               b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')