def train_and_test(X_train, Y_train, X_test=X_test, Y_test=Y_test, num_buckets=30000): # Define a vanilla LSTM model with Keras lstm_model = get_keras_lstm(num_buckets) lstm_model.fit(X_train, Y_train, epochs=5, verbose=0) preds_test = lstm_model.predict(X_test)[:, 0] > 0.5 return (preds_test == Y_test).mean()
def train_and_test( X_train, Y_train, X_valid=X_valid, Y_valid=Y_valid, X_test=X_test, Y_test=Y_test, num_buckets=30000, ): # Define a vanilla LSTM model with Keras lstm_model = get_keras_lstm(num_buckets) lstm_model.fit( X_train, Y_train, epochs=25, validation_data=(X_valid, Y_valid), callbacks=[get_keras_early_stopping(5)], verbose=0, ) preds_test = lstm_model.predict(X_test)[:, 0] > 0.5 return (preds_test == Y_test).mean()