コード例 #1
0
def run():
    task = sys.argv[1]
    f = open(sys.argv[2])

    # parameters
    kwLimit = utils.get_parameter('kwLimit')
    edge_th = utils.get_parameter('edge_th')
    dispth = utils.get_parameter('dispth')
    ethunit = utils.get_parameter('ethunit')

    for years in f.readlines():
        currentyears = years.replace('\n', '').split(";")
        print('--> running ' + task + 'for' + str(currentyears))
        if task == '--raw-network':
            # keywords relevance
            relevant.relevant_full_corpus(currentyears, kwLimit, edge_th)
            # full network
            graph.construct_graph(currentyears, kwLimit, edge_th)
            # sensitivity
            graph.sensitivity(currentyears, kwLimit, edge_th)

        if task == '--classification':
            # construct communities
            graph.construct_communities(currentyears, kwLimit, edge_th, dispth,
                                        ethunit)
            # post processing
            postprocessing.export_classification(currentyears, kwLimit,
                                                 edge_th, dispth, ethunit)

        if task == '--custom':
            print("custom")
コード例 #2
0
def main():
    a = get_parameter('a')
    b = get_parameter('b')
    c = get_parameter('c')

    qe = QadraticEquation(a, b, c)
    d = qe.get_descr()
    print(qe.res(d))
コード例 #3
0
ファイル: cephfs_volume.py プロジェクト: nullnonenilNULL/Job
 def __init__(self,
              monitors_addr=None,
              user=None,
              secret_name=None,
              mount_path=None,
              cephfs_path=None):
     self.monitors = get_parameter(monitors_addr, "CEPHFS_MONITORS_ADDR",
                                   "").split(",")
     self.user = get_parameter(user, "CEPHFS_USER", "admin")
     self.secret_name = get_parameter(secret_name, "CEPHFS_SECRET",
                                      "cephfs-secret")
     self.mount_path = get_parameter(mount_path, "CEPHFS_MOUNT_PATH",
                                     "/data")
     self.cephfs_path = get_parameter(cephfs_path, "CEPHFS_PATH", "/")
コード例 #4
0
ファイル: script.py プロジェクト: VOlni/Quadratic
def main():
    a = get_parameter('a')
    b = get_parameter('b')
    c = get_parameter('c')

    qe = QuadraticEquation(a, b, c)
    qe.calc_descr()

    if qe.get_desc() < 0:
        print("No results!")
    else:
        xl = qe.calc_root()
        x2 = qe.calc_root(order=2)
        print("Results: xl=%s, x2=%s" % (xl, x2))
コード例 #5
0
def test_patent_measure():
    mongo = pymongo.MongoClient(utils.get_parameter('mongopath', True, True))
    years = ['1976', '1977', '1978', '1979', '1980']
    patents = mongo['patent']['keywords'].find({"app_year": {
        "$in": years
    }},
                                               no_cursor_timeout=True)
    measures = []
    nmeasures = 10  # len(kwattrsdico[graph.vs['name'][0]])
    i = 0
    for currentpatent in patents:
        #if i%10000==0 : print('patent measures : '+str(100*i/npatents))
        print('patent measures : ' +
              currentpatent['id'])  #+' : '+str(100*i/npatents))
        currentmeasures = [0.0] * nmeasures
        kwnum = 0
        for kw in currentpatent['keywords']:
            print(kw)

#if kw in kwattrsdico :
#currentmeasures = [currentmeasures[i]+kwattrsdico[kw][i] for i in range(len(currentmeasures))]
#    kwnum=kwnum+1
        nk = len(currentpatent['keywords'])
        if sum(currentmeasures) != 0:
            measures.append([currentpatent['id'], nk, kwnum] + currentmeasures)
        i = i + 1
コード例 #6
0
def npatent_years():
    mongo = pymongo.MongoClient(utils.get_parameter('mongopath', True, True))
    data = []
    window = int(utils.get_parameter('window-size'))
    for year in range(1976 + window - 1, 2013):
        print(year)
        years = map(lambda y: str(y),
                    range(int(year - window + 1), int(year + 1)))
        patents = mongo['patent']['keywords'].find(
            {"app_year": {
                "$in": years
            }}, no_cursor_timeout=True)
        npatents = patents.count()
        yearrange = str(years[0]) + "-" + str(years[len(years) - 1])
        data.append([yearrange, npatents])
    utils.export_csv(data, 'data/patentcount_window' + str(window) + '.csv',
                     ";", "yearrange;count")
コード例 #7
0
def construct_communities(years, kwLimit, min_edge_th, dispth, ethunit):
    mongo = pymongo.MongoClient(utils.get_parameter('mongopath', True, True))
    patents = mongo['patent']['keywords'].find({"app_year": {
        "$in": years
    }},
                                               no_cursor_timeout=True)
    npatents = patents.count()
    yearrange = years[0] + "-" + years[len(years) - 1]

    graph = pickle.load(
        open(
            'pickled/graph_' + yearrange + '_' + str(kwLimit) + '_eth' +
            str(min_edge_th) + '.pkl', 'rb'))

    currentgraphcoms = get_communities(graph, dispth,
                                       math.floor(ethunit * npatents))
    pickle.dump(
        currentgraphcoms,
        open(
            'pickled/filteredgraphcoms_' + yearrange + '_' + str(kwLimit) +
            '_eth' + str(min_edge_th) + '_dispth' + str(dispth) + '_ethunit' +
            str(ethunit) + '.pkl', 'wb'))
コード例 #8
0
def config():
    api_config = get_parameter('api')
    return json.dumps(api_config)
コード例 #9
0
from flask import Flask, render_template
from utils import get_parameter
import json
import logging
import sys

log = logging.getLogger(__name__)
logging.basicConfig(
    # filename='data_quality.log',
    stream=sys.stdout,
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

app = Flask(__name__)


@app.route('/', methods=['GET'])
def index():
    return render_template('index.html')


@app.route('/config', methods=['GET'])
def config():
    api_config = get_parameter('api')
    return json.dumps(api_config)


if __name__ == "__main__":
    config = get_parameter('app')
    app.run(host=config['host'], port=int(config['port']), threaded=True)
コード例 #10
0
def export_classification(years, kwLimit, min_edge_th, dispth, ethunit):
    resdir = 'classification/classification_window' + str(
        int(years[len(years) - 1]) - int(years[0]) + 1) + '_kwLimit' + str(
            int(kwLimit)) + '_dispth' + str(dispth) + '_ethunit' + str(ethunit)
    try:
        os.makedirs(resdir)
    except:
        print("res dir exists")

    print("Constructing patent probas for years " + str(years))

    mongo = pymongo.MongoClient(utils.get_parameter('mongopath', True, True))
    # load keywords
    patents = mongo['patent']['keywords'].find({"app_year": {
        "$in": years
    }},
                                               no_cursor_timeout=True)
    npatents = patents.count()
    yearrange = years[0] + "-" + years[len(years) - 1]
    # load graph and construct communities
    [graph, coms] = pickle.load(
        open(
            'pickled/filteredgraphcoms_' + yearrange + '_' + str(kwLimit) +
            '_eth' + str(min_edge_th) + '_dispth' + str(dispth) + '_ethunit' +
            str(ethunit) + '.pkl', 'rb'))
    # best clustering in com[len(com)-1]
    clustering = coms[len(coms) - 1]

    #construct dico kw -> community
    dico = {}
    for n in range(graph.vcount()):
        name = graph.vs['name'][n]
        dico[name] = clustering.membership[n]

    ncommunities = len(clustering.sizes())
    probas = []
    rownames = []
    counts = []

    i = 0
    for currentpatent in patents:
        if i % 10000 == 0: print('probas : ' + str(100 * i / npatents))
        #currentpatent = patents.next()
        currentprobas = [0.0] * ncommunities
        for kw in currentpatent['keywords']:
            if kw in dico:
                currentprobas[dico[kw]] = currentprobas[dico[kw]] + 1
            nk = len(currentpatent['keywords'])
        if sum(currentprobas) > 0:
            probas.append(currentprobas)
            rownames.append(currentpatent['id'])
            counts.append(nk)
        i = i + 1

    # export the matrix proba as csv
    utils.export_matrix_sparse_csv(
        probas, [rownames, counts],
        resdir + '/probas_' + yearrange + '_kwLimit' + str(kwLimit) +
        '_dispth' + str(dispth) + '_ethunit' + str(ethunit) + '.csv', ";")

    # add attributes to keywords
    degree = graph.degree(range(graph.vcount()))
    evcentrality = graph.eigenvector_centrality(weights='weight')
    bcentrality = graph.betweenness(weights='weight')
    ccentrality = graph.closeness(weights='weight')
    weighteddegree = graph.strength(range(graph.vcount()), weights='weight')

    kwattrsdico = {}
    for n in range(graph.vcount()):
        kwattrsdico[graph.vs['name'][n]] = [
            graph.vs['tidf'][n], graph.vs['disp'][n], graph.vs['docfreq'][n],
            graph.vs['termhood'][n], degree[n], weighteddegree[n],
            bcentrality[n], ccentrality[n], evcentrality[n]
        ]

    kwdata = []
    for currentkw in dico.keys():
        if currentkw in kwattrsdico:
            kwdata.append([currentkw, dico[currentkw]] +
                          kwattrsdico[currentkw])

    # export keywords as csv
    utils.export_csv(
        kwdata, resdir + '/keywords_' + yearrange + '_kwLimit' + str(kwLimit) +
        '_dispth' + str(dispth) + '_ethunit' + str(ethunit) + '.csv', ';',
        'keyword;community;tidf;technodispersion;docfreq;termhood;degree;weighteddegree;betweennesscentrality;closenesscentrality;eigenvectorcentrality'
    )

    # Patent measures
    patents = mongo['patent']['keywords'].find({"app_year": {
        "$in": years
    }},
                                               no_cursor_timeout=True)
    measures = []
    nmeasures = len(kwattrsdico[graph.vs['name'][0]])
    i = 0
    for currentpatent in patents:
        #if i%10000==0 : print('patent measures : '+str(100*i/npatents))
        print('patent measures : ' + str(100 * i / npatents))
        currentmeasures = [0.0] * nmeasures
        kwnum = 0
        for kw in currentpatent['keywords']:
            if kw in kwattrsdico:
                currentmeasures = [
                    currentmeasures[i] + kwattrsdico[kw][i]
                    for i in range(len(currentmeasures))
                ]
                kwnum = kwnum + 1
        nk = len(currentpatent['keywords'])
        if sum(currentmeasures) != 0:
            measures.append([currentpatent['id'], nk, kwnum] + currentmeasures)
        i = i + 1

    # export measures

    utils.export_csv(
        measures, resdir + '/patent_' + yearrange + '_kwLimit' + str(kwLimit) +
        '_dispth' + str(dispth) + '_ethunit' + str(ethunit) + '.csv', ';',
        'patent;kws;classkws;tidf;technodispersion;docfreq;termhood;degree;weighteddegree;betweennesscentrality;closenesscentrality;eigenvectorcentrality'
    )
コード例 #11
0
                    }
                    show_loss, show_accu, _ = sess.run(
                        [self.loss, self.accuracy, self.optimizer],
                        feed_dict=feed)

                    if global_steps % show_every_n == 0:
                        print(
                            'epoch: {}/{}..'.format(epoch + 1,
                                                    self.num_epoches + 1),
                            'global_step: {}..'.format(global_steps),
                            'loss: {:.3f}..'.format(show_loss),
                            'accuracy: {:.2f}..'.format(show_accu))

                    if global_steps % saved_every_n == 0:
                        saver.save(
                            sess, save_path +
                            "e{}_s{}.ckpt".format(epoch, global_steps))
            saver.save(sess, save_path + "lastest.ckpt")

        print('training finished')


if __name__ == '__main__':
    #加载训练data,label已经被转换为one_hot
    train_x = utils.get_image_data()
    train_y = utils.get_one_hot_label_data()
    label2int, int2label = utils.get_parameter()

    model = AlexNet()
    model.train(train_x, train_y)
コード例 #12
0
def construct_graph(years, kwLimit, min_edge_th):
    mongo = pymongo.MongoClient(utils.get_parameter('mongopath', True, True))
    database = mongo['relevant']
    # get edges
    yearstr = str(years[0]) + '-' + str(years[len(years) - 1])
    edges = database['network_' + yearstr + '_full_' + str(kwLimit) + '_eth' +
                     str(min_edge_th)].find()
    n = edges.count()
    print(n)

    # construct edgelist
    edgelist = [None] * n
    for i in range(n):
        edge = edges.next()
        v = edge['edge'].split(';')
        edgelist[i] = (v[0], v[1], edge['weight'])

    # construct graph
    g = Graph.TupleList(edgelist, edge_attrs=["weight"])

    # simplify
    gg = g.simplify(combine_edges="first")

    # filter
    filt = open('data/filter.csv', 'rb').readlines()
    toremove = set()
    for f in filt:
        r = f.decode('utf-8').replace('\n', '')
        if r in gg.vs['name']:
            toremove.add(gg.vs['name'].index(r))
    ids = list(set(range(len(gg.vs['name']))) - toremove)

    gf = gg.subgraph(ids)

    print('graph edges : raw = ' + str(n) + ' ; edgelist = ' +
          str(len(edgelist)) + ' ; graph = ' + str(g.vcount()) +
          ' ; simpl graph = ' + str(gg.vcount()) + ' ; filtered = ' +
          str(gf.vcount()))

    # add attributes
    vertices = mongo['relevant']['relevant_' + yearstr + '_full_' +
                                 str(kwLimit)].find()
    nvertices = vertices.count()
    # dico kw -> vertex in mongo
    dico = {}
    for currentvertex in vertices:
        dico[currentvertex['keyword']] = currentvertex
    tidf = []
    docf = []
    termhood = []
    for name in gf.vs['name']:
        attrs = dico[name]
        tidf.append(attrs['tidf'])
        docf.append(attrs['docfrequency'])
        termhood.append(attrs['cumtermhood'])
    gf.vs['tidf'] = tidf
    gf.vs['docfreq'] = docf
    gf.vs['termhood'] = termhood

    print('with attrs : ' + str(gf.vcount()))

    kwstechno = list(mongo['keywords']['techno'].find(
        {'keyword': {
            '$in': gf.vs['name']
        }}))
    disps = list(
        map(
            lambda d:
            (d['keyword'], len(d.keys()) - 1,
             dispersion([
                 float(d[k]) for k in d.keys() if k != 'keyword' and k != '_id'
             ])), kwstechno))  # Python 3 and 2
    #disps = map(lambda d:(d['keyword'],len(d.keys())-1,dispersion([float(d[k]) for k in d.keys() if k!='keyword'and k!='_id'])),kwstechno) # Python 2
    disp_dico = {}
    for disp in disps:
        disp_dico[disp[0]] = disp[2]
    disp_list = []
    for name in gf.vs['name']:
        disp_list.append(disp_dico[name])
    gf.vs['disp'] = disp_list

    print('with techdisp : ' + str(gf.vcount()))

    # save everything
    pickle.dump(
        gf,
        open(
            'pickled/graph_' + yearstr + '_' + str(kwLimit) + '_eth' +
            str(min_edge_th) + '.pkl', 'wb'))
コード例 #13
0
ファイル: config.py プロジェクト: s-bl/cwyc
def configure_parallel(**kwargs):

    basic_conf, modules_fn, summary_writer = basic_configure(**kwargs)

    jobdir = basic_conf['jobdir']
    env_spec = basic_conf['env_spec']
    T = env_spec['T']
    seed = basic_conf['seed']
    num_worker = basic_conf['num_worker']
    env_fn = modules_fn['env_fn']
    tasks_fn = modules_fn['tasks_fn']
    policies_fn = modules_fn['policies_fn']
    gnets_fn = modules_fn['gnets_fn']
    task_selector_fn = modules_fn['task_selector_fn']
    task_planner_fn = modules_fn['task_planner_fn']
    forward_model_fn = modules_fn['forward_model_fn']
    rollout_worker_fn = modules_fn['rollout_worker_fn']

    ##########################
    #    Continue training   #
    ##########################

    restart_after = get_parameter('restart_after', params=kwargs, default=None)
    continued_params = {}
    if restart_after is not None and os.path.exists(os.path.join(jobdir, 'restart')):
        with open(os.path.join(jobdir, 'parallel_params.json'), 'r') as f:
            continued_params = json.load(f)

    ##########################
    #  Load external config  #
    ##########################

    parallel_params_path = get_parameter('basic_params_path', params=continued_params, default=None)
    parallel_params_path = get_parameter('basic_params_path', params=kwargs, default=parallel_params_path)
    external_params = {}
    if parallel_params_path is not None:
        with open(parallel_params_path, 'r') as f:
            external_params = json.load(f)

    ###################################
    #  Prepare shared memory manager  #
    ###################################

    manager = Manager()
    episode = manager.dict()
    info = manager.dict()
    managed_memory = dict(
        episode=episode,
        info=info,
    )

    ##########################
    # Prepare rollout worker #
    ##########################

    parallel_rollout_manager_params = dict(
        num_worker=num_worker,
    )
    update_default_params(parallel_params_path, external_params.get('parallel_rollout_manager_params', {}))
    update_default_params(parallel_params_path, continued_params.get('parallel_rollout_manager_params', {}))
    update_default_params(parallel_rollout_manager_params, kwargs.get('parallel_rollout_manager_params', {}))

    parallel_rollout_manager = ParallelRolloutManager(env_spec, env_fn, tasks_fn, policies_fn, gnets_fn, task_selector_fn,
                                                      task_planner_fn, forward_model_fn, rollout_worker_fn, T,
                                                      managed_memory=managed_memory, **parallel_rollout_manager_params)

    ##########################
    #  Prepare train worker  #
    ##########################

    parallel_train_manager = ParallelTrainManager(managed_memory=managed_memory, summary_writer=summary_writer,
                                                  jobdir=jobdir, seed=seed)
    [parallel_train_manager.add_module(policy_fn) for policy_fn in policies_fn]
    [parallel_train_manager.add_module(task_fn) for task_fn in tasks_fn]
    parallel_train_manager.add_module(forward_model_fn)
    [parallel_train_manager.add_module(gnets_fn[i][j]) for i in range(len(tasks_fn)) for j in range(len(tasks_fn))]
    parallel_train_manager.add_module(task_selector_fn)
    parallel_train_manager.add_module(task_planner_fn)

    ##########################
    #  Load external params  #
    ##########################

    params_path = basic_conf['params_path']
    params_prefix = basic_conf['params_prefix']

    if params_path:
        params_path = params_path if params_path else jobdir
        try:
            parallel_train_manager.load_global_params(path=params_path, prefix=params_prefix)
            logger.info(f'Restored params from {params_path} with prefix {params_prefix}')
        except:
            logger.warning('Could not restore params')
            raise

    ##########################
    #    Continue training   #
    ##########################

    if basic_conf['restart_after'] is not None and os.path.exists(os.path.join(jobdir, 'restart')):
        try:
            parallel_train_manager.load_global_params(path=jobdir, prefix='latest')
            parallel_train_manager.restore_buffer(path=jobdir, prefix='latest')
            logger.info(f'Restored params from {params_path} with prefix {params_prefix}')
        except:
            logger.warning('Could not restore params')
            raise

    params = dict(
        parallel_rollout_manager_params=parallel_rollout_manager_params,
    )

    with open(os.path.join(jobdir, 'parallel_params.json'), 'w') as f:
        json.dump(params, f)

    return parallel_rollout_manager, parallel_train_manager, basic_conf, params, modules_fn, managed_memory, summary_writer
コード例 #14
0
ファイル: config.py プロジェクト: s-bl/cwyc
def basic_configure(**kwargs):
    ##########################
    #     load experiment    #
    ##########################

    experiments_path = []
    if 'experiment' in kwargs and kwargs['experiment'] is not None:
        experiments_kwargs = []
        experiments_path = [os.path.splitext(os.path.basename(kwargs['experiment']))[0]]
        experiment_basedir = os.path.dirname(kwargs['experiment'])
        while True:
            with open(os.path.join(experiment_basedir, experiments_path[-1] + '.json'), 'r') as f:
                experiments_kwargs.append(json.load(f))
            if experiments_kwargs[-1]['inherit_from'] is not None:
                experiments_path.append(experiments_kwargs[-1]['inherit_from'])
                continue
            break
        for experiment_kwargs in reversed(experiments_kwargs):
            update_default_params(kwargs, experiment_kwargs)

    ##########################
    #     load json string   #
    ##########################

    if 'json_string' in kwargs and kwargs['json_string'] is not None:
        update_default_params(kwargs, json.loads(kwargs['json_string']))

    ##########################
    #     Prepare logging    #
    ##########################

    clean = get_parameter('clean', params=kwargs, default=False)
    jobdir = get_parameter('jobdir', params=kwargs, default=mkdtemp())

    if clean and os.path.exists(jobdir) and not os.path.exists(os.path.join(jobdir, 'restart')):
        rmtree(jobdir)

    os.makedirs(jobdir, exist_ok=True)

    logging.basicConfig(level=logging.INFO,
                        format='[%(asctime)s] <%(levelname)s> %(name)s: %(message)s',
                        datefmt='%m/%d/%Y %I:%M:%S %p',
                        handlers=([
                                   logging.FileHandler(os.path.join(jobdir, 'events.log'))] +
                                  [logging.StreamHandler(sys.stdout)])
                        )

    summary_writer = SummaryWriter(os.path.join(jobdir, 'tf_board'))

    if clean: logger.info(f'Cleaned jobdir {jobdir}')

    for experiment_path in reversed(experiments_path):
        logger.info(f'Loaded params from experiment {experiment_path}')

    project_path = os.path.dirname(os.path.realpath(__file__))
    try:
        repo = Repo(project_path, search_parent_directories=True)
        active_branch = repo.active_branch
        latest_commit = repo.commit(active_branch)
        latest_commit_sha = latest_commit.hexsha
        latest_commit_sha_short = repo.git.rev_parse(latest_commit_sha, short=6)
        logger.info(f'We are on branch {active_branch} using commit {latest_commit_sha_short}')
    except InvalidGitRepositoryError:
        logger.warn(f'{project_path} is not a git repo')

    ##########################
    #    Continue training   #
    ##########################

    restart_after = get_parameter('restart_after', params=kwargs, default=None)
    continued_params = {}
    if restart_after is not None and os.path.exists(os.path.join(jobdir, 'restart')):
        with open(os.path.join(jobdir, 'basic_params.json'), 'r') as f:
            continued_params = json.load(f)

    ##########################
    #  Load external config  #
    ##########################

    basic_params_path = get_parameter('basic_params_path', params=continued_params, default=None)
    basic_params_path = get_parameter('basic_params_path', params=kwargs, default=basic_params_path)
    external_params = {}
    if basic_params_path is not None:
        with open(basic_params_path, 'r') as f:
            external_params = json.load(f)

    ##########################
    #        Seeding         #
    ##########################

    seed = get_parameter('seed', params=external_params, default=int(np.random.random_integers(0, 2**23-1)))
    seed = get_parameter('seed', params=continued_params, default=seed)
    seed = get_parameter('seed', params=kwargs, default=seed)

    logger.info(f'Using seed {seed}')

    ####################
    #    Prepare env   #
    ####################

    env_spec = get_parameter('env', params=external_params, default=None)
    env_spec = get_parameter('env', params=continued_params, default=env_spec)
    env_spec = get_parameter('env', params=kwargs, default=env_spec)

    env_params = dict()
    update_default_params(env_params, external_params.get('env_params', {}))
    update_default_params(env_params, continued_params.get('env_params', {}))
    update_default_params(env_params, kwargs.get('env_params', {}))

    env_proto = import_function(env_spec)
    tmp_env = env_proto(**env_params)
    obs = tmp_env.reset()
    env_spec = dict(
        o_dim=obs['observation'].shape[0],
        a_dim=tmp_env.action_space.shape[0],
        g_dim=obs['desired_goal'].shape[0],
    )
    if hasattr(tmp_env, 'goal_min'): env_spec['goal_min'] = tmp_env.goal_min
    if hasattr(tmp_env, 'goal_max'): env_spec['goal_max'] = tmp_env.goal_max
    update_default_params(env_spec, external_params.get('env_spec', {}))
    update_default_params(env_spec, continued_params.get('env_spec', {}))
    update_default_params(env_spec, kwargs.get('env_spec', {}))

    T = get_parameter('T', params=env_spec, default=800)


    env_fn = (env_proto, env_params)

    ####################
    #   Prepare tasks  #
    ####################

    tasks_specs = []
    update_default_params(tasks_specs, external_params.get('tasks_specs', {}))
    update_default_params(tasks_specs, continued_params.get('tasks_specs', {}))
    update_default_params(tasks_specs, kwargs.get('tasks_specs', {}))

    tasks_specs = [task_spec for task_spec in tasks_specs if task_spec.get('active', True)]

    tasks_fn = []
    for task_spec in tasks_specs:
        if 'active' in task_spec: del(task_spec['active'])
        task_spec['id'] = len(tasks_fn)
        task_spec['scope'] = f'Task{task_spec["id"]}'
        tasks_fn.append((Task, task_spec))

    ####################
    # Prepare policies #
    ####################

    policy_params = dict()
    update_default_params(policy_params, external_params.get('policy_params', {}))
    update_default_params(policy_params, continued_params.get('policy_params', {}))
    update_default_params(policy_params, kwargs.get('policy_params', {}))

    assert 'policy_type' in policy_params

    policy_proto = import_function(policy_params['policy_type'])

    policies_fn = []
    policies_params = []
    for task_spec in tasks_specs:
        params = deepcopy(policy_params)
        params['env_spec'] = env_spec
        params['task_spec'] = task_spec
        params['scope'] = f'policy_{task_spec["id"]}'
        del params['policy_type']
        policies_params.append(params)
        policies_fn.append((policy_proto, params))

    #########################
    # Prepare task selector #
    #########################

    task_selector_params = dict(
        tasks_specs=tasks_specs,
        surprise_weighting=0.1,
        buffer_size=100,
        lr=0.1,
        reg=1e-3,
        precision=1e-3,
        eps_greedy_prob=0.05,
        surprise_hist_weighting=.99,
        scope='taskSelector',
        fixed_Q=None,
        epsilon=0.1,
    )
    update_default_params(task_selector_params, external_params.get('task_selector_params', {}))
    update_default_params(task_selector_params, continued_params.get('task_selector_params', {}))
    update_default_params(task_selector_params, kwargs.get('task_selector_params', {}))

    task_selector_fn = (TaskSelector, task_selector_params)

    #########################
    # Prepare task planner  #
    #########################

    task_planner_params = dict(
        env_specs=env_spec,
        tasks_specs=tasks_specs,
        surprise_weighting=0.001,
        surprise_hist_weighting=.99,
        buffer_size=100,
        eps_greedy_prob=0.05,
        max_seq_length=10,
        scope='taskPlanner',
        fixed_Q=None,
        epsilon=0.0001,
    )
    update_default_params(task_planner_params, external_params.get('task_planner_params', {}))
    update_default_params(task_planner_params, continued_params.get('task_planner_params', {}))
    update_default_params(task_planner_params, kwargs.get('task_planner_params', {}))

    task_planner_fn = (TaskPlanner, task_planner_params)

    #########################
    #     Prepare gnets     #
    #########################

    gnet_params = dict(
        env_spec=env_spec,
        tasks_specs=tasks_specs,
        pos_buffer_size=int(1e3),
        neg_buffer_size=int(1e5),
        batch_size=64,
        learning_rate=1e-4,
        train_steps=100,
        only_fst_surprising_singal=True,
        only_pos_rollouts=False,
        normalize=False,
        normalizer_params=dict(
            eps=0.01,
            default_clip_range=5
        ),
        coords_gen_params=dict(
            buffer_size=int(1e5),
        ),
        reset_model_below_n_pos_samples=20,
        use_switching_reward=True,
    )
    update_default_params(gnet_params, external_params.get('gnet_params', {}))
    update_default_params(gnet_params, continued_params.get('gnet_params', {}))
    update_default_params(gnet_params, kwargs.get('gnet_params', {}))

    assert 'network_params' in gnet_params

    gnets_fn = []
    gnets_params = []
    for i in range(len(tasks_specs)):
        gnets_fn.append([])
        gnets_params.append([])
        for j in range(len(tasks_specs)):
            params = deepcopy(gnet_params)
            params['task_from_id'] = i
            params['task_to_id'] = j
            params['scope'] = f'gnet_{i}_to_{j}'
            gnets_params[-1].append(params)
            gnets_fn[-1].append((Gnet, params))

    #########################
    # Prepare forward model #
    #########################

    forward_model_params = dict(
        env_spec=env_spec,
        buffer_size=int(1e6),
        lr=1e-4,
        hist_length=1,
        batch_size=64,
        network_params=dict(
            nL=[100]*9,
            net_type='forward_model.models:ForwardModelMLPStateDiff',
            activation='tensorflow.nn:tanh',
            layer_norm=False,
            scope='mlp'
        ),
        normalizer_params=None,
        train_steps=100,
        scope='forwardModel'
    )
    update_default_params(forward_model_params, external_params.get('forward_model_params', {}))
    update_default_params(forward_model_params, continued_params.get('forward_model_params', {}))
    update_default_params(forward_model_params, kwargs.get('forward_model_params', {}))

    forward_model_fn = (ForwardModel, forward_model_params)

    #########################
    # Prepare RolloutWorker #
    #########################

    rollout_worker_params = dict(
        surprise_std_scaling=3,
        discard_modules_buffer=True,
        seed=seed,
        forward_model_burnin_eps=50,
        resample_goal_every=5,
    )
    update_default_params(rollout_worker_params, external_params.get('rollout_worker_params', {}))
    update_default_params(rollout_worker_params, continued_params.get('rollout_worker_params', {}))
    update_default_params(rollout_worker_params, kwargs.get('rollout_worker_params', {}))

    rollout_worker_fn = (RolloutWorker, rollout_worker_params)

    #########################
    # Write params to file  #
    #########################

    inherit_from = get_parameter('inherit_from', params=external_params, default=None)
    inherit_from = get_parameter('inherit_from', params=continued_params, default=inherit_from)
    inherit_from = get_parameter('inherit_from', params=kwargs, default=inherit_from)

    params_path = get_parameter('params_path', params=external_params, default=None)
    params_path = get_parameter('params_path', params=continued_params, default=params_path)
    params_path = get_parameter('params_path', params=kwargs, default=params_path)

    params_prefix = get_parameter('params_prefix', params=external_params, default=None)
    params_prefix = get_parameter('params_prefix', params=continued_params, default=params_prefix)
    params_prefix = get_parameter('params_prefix', params=kwargs, default=params_prefix)

    max_env_steps = get_parameter('max_env_steps', params=external_params, default=None)
    max_env_steps = get_parameter('max_env_steps', params=continued_params, default=max_env_steps)
    max_env_steps = get_parameter('max_env_steps', params=kwargs, default=max_env_steps)

    render = get_parameter('render', params=external_params, default=None)
    render = get_parameter('render', params=continued_params, default=render)
    render = get_parameter('render', params=kwargs, default=render)

    num_worker = get_parameter('num_worker', params=external_params, default=None)
    num_worker = get_parameter('num_worker', params=continued_params, default=num_worker)
    num_worker = get_parameter('num_worker', params=kwargs, default=num_worker)

    eval_runs = get_parameter('eval_runs', params=external_params, default=None)
    eval_runs = get_parameter('eval_runs', params=continued_params, default=eval_runs)
    eval_runs = get_parameter('eval_runs', params=kwargs, default=eval_runs)

    env = get_parameter('env', params=external_params, default=None)
    env = get_parameter('env', params=continued_params, default=env)
    env = get_parameter('env', params=kwargs, default=env)

    restart_after = get_parameter('restart_after', params=kwargs, default=restart_after)

    json_string = get_parameter('json_string', params=external_params, default=None)
    json_string = get_parameter('json_string', params=continued_params, default=json_string)
    json_string = get_parameter('json_string', params=kwargs, default=json_string)

    experiment = get_parameter('experiment', params=external_params, default=None)
    experiment = get_parameter('experiment', params=continued_params, default=experiment)
    experiment = get_parameter('experiment', params=kwargs, default=experiment)

    store_params_every = get_parameter('store_params_every', params=external_params, default=None)
    store_params_every = get_parameter('store_params_every', params=continued_params, default=store_params_every)
    store_params_every = get_parameter('store_params_every', params=kwargs, default=store_params_every)

    params_cache_size = get_parameter('params_cache_size', params=external_params, default=None)
    params_cache_size = get_parameter('params_cache_size', params=continued_params, default=params_cache_size)
    params_cache_size = get_parameter('params_cache_size', params=kwargs, default=params_cache_size)

    use_surprise = get_parameter('use_surprise', params=external_params, default=True)
    use_surprise = get_parameter('use_surprise', params=continued_params, default=use_surprise)
    use_surprise = get_parameter('use_surprise', params=kwargs, default=use_surprise)

    params = dict(
        inherit_from=inherit_from,
        basic_params_path=basic_params_path,
        params_path=params_path,
        params_prefix=params_prefix,
        store_params_every=store_params_every,
        params_cache_size=params_cache_size,
        use_surprise=use_surprise,
        seed=seed,
        clean=clean,
        jobdir=jobdir,
        max_env_steps=max_env_steps,
        render=render,
        num_worker=num_worker,
        eval_runs=eval_runs,
        env=env,
        restart_after=restart_after,
        json_string=json_string,
        experiment=experiment,
        env_spec=env_spec,
        env_params=env_params,
        tasks_specs=tasks_specs,
        policy_params=policy_params,
        policies_params=policies_params,
        task_selector_params=task_selector_params,
        task_planner_params=task_planner_params,
        gnet_params=gnet_params,
        gnets_params=gnets_params,
        forward_model_params=forward_model_params,
        rollout_worker_params=rollout_worker_params,
    )

    assert np.all([k in params for k in kwargs.keys()]), [k for k in kwargs.keys() if not k in params]

    with open(os.path.join(jobdir, 'basic_params.json'), 'w') as f:
        json.dump(params, f)

    return params, {'env_fn': env_fn, 'tasks_fn': tasks_fn, 'policies_fn': policies_fn,
            'gnets_fn': gnets_fn, 'task_selector_fn': task_selector_fn, 'task_planner_fn': task_planner_fn,
            'forward_model_fn': forward_model_fn, 'rollout_worker_fn': rollout_worker_fn}, summary_writer