コード例 #1
0
def main(args):
    global g_output_dir
    g_output_dir = pj( ut.get_repo_dir(), "out/hough" )
    img_dir = pj( ut.get_repo_dir(), "data/hough" )
    img_fn = args.image_file
    img = cv2.imread( pj(img_dir, img_fn) )
    edged = ut.detect_edges(img)
    edged_fn = img_fn[:-4] + "_edged.png"
    cv2.imwrite( pj(g_output_dir, edged_fn), edged )

    hough_lines(np.copy(edged), np.copy(img), img_fn)
    hough_lines_p(np.copy(edged), np.copy(img), img_fn)
    bw = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hough_circles(bw, np.copy(img), img_fn)
コード例 #2
0
        elif self.tuning == TuningParam.lamb:
            assert self.use_ppc, 'need to use ppc to tune lambda'
            *_, ppc_ind = self.get_ppc_off(frame,
                                           p_int)  # ppc_ind: (B, F, T, J)
            ppc_ind_throw = torch.gather(ppc_ind, 2, tof).squeeze()  # B, F, J
            ppc_ind_throw = torch.gather(ppc_ind_throw, 1,
                                         ball_field_ind).squeeze()  # B, J
            return ppc_ind_throw


if __name__ == '__main__':
    # args
    parser = argparse.ArgumentParser()
    parser.add_argument('-d',
                        '--data_dir',
                        default=os.path.join(get_repo_dir(), 'data'),
                        help='path to directory with data files')
    parser.add_argument('-j',
                        '--num_workers',
                        default=4,
                        help='number of data loader workers',
                        type=int)
    parser.add_argument('-b',
                        '--batch_size',
                        default=4,
                        help='batch size to use',
                        type=int)
    parser.add_argument('-e',
                        '--epochs',
                        default=5,
                        help='number of training epochs',
コード例 #3
0
                                           self.input_noise_std)
        out = self.net(net_input)
        total_loss = self.loss(out, image)
        total_loss.backward()
        if iter_num == self.iters[self.iter_idx]:
            self.iter_idx += 1
            self.save(iter_num, torch_to_np(out))
            if self.iter_idx == len(self.iters):
                self.iter_idx = 0

    def run_all(self):
        for image, target in tqdm(self.dataloader):
            self.run(image.to(self.device))


data = CIFAR10(root=os.path.join(get_repo_dir(), 'data'),
               train=True,
               download=True,
               transform=identity_transform)
save_dir = os.path.join(get_repo_dir(), 'data/transforms')
os.makedirs(save_dir, exist_ok=True)

#first = True
#hashes = set()
#if first:
#    for im, t in data:
#        hashes.add(image_hash(im))
#    assert len(data) == len(hashes), 'colliding hash'
#    pickle.dump(hashes, open(os.path.join(save_dir, 'hashes.pkl'), 'wb'))
#else:
#    hashes_old = pickle.load(open(os.path.join(save_dir, 'hashes.pkl'), 'rb'))
コード例 #4
0
def play_eppa_cpu(track_df,
                  game_id,
                  play_id,
                  viz_df=False,
                  save_np=False,
                  stats_df=False,
                  viz_true_proj=False,
                  save_all_dfs=False,
                  out_dir_path=join(get_repo_dir(), 'output/{}'),
                  simulatePass=None):
    play_df = track_df[(track_df.playId == play_id)
                       & (track_df.gameId == game_id)].sort_values(
                           by='frameId')

    events = set(play_df.event.unique())
    if 'pass_forward' not in events:
        raise ValueError('No Pass Forward in play')
    if 'fumble' in events:
        raise ValueError('Fumble in play')

    ball_snap_frame = play_df.loc[
        (play_df.nflId == 0) & (play_df.event == 'ball_snap')].frameId.iloc[0]
    pass_forward_frame = play_df.loc[(play_df.nflId == 0) & (
        (play_df.event == 'pass_forward')
        | (play_df.event == 'pass_shovel'))].frameId.sort_values().iloc[0]
    play_df['frames_since_snap'] = play_df.frameId - ball_snap_frame

    pass_arriveds = play_df.loc[(play_df.nflId == 0) &
                                (play_df.event == 'pass_arrived'),
                                'frameId'].to_list()
    true_pass_found = len(pass_arriveds) > 0
    if true_pass_found:
        true_pass_completed = ('pass_outcome_caught'
                               in events) or ('pass_outcome_touchdown'
                                              in events)
        pass_arrived_frame = pass_arriveds[0]
        true_T_frames = pass_arrived_frame - pass_forward_frame
        true_x, true_y = play_df.loc[(play_df.nflId == 0) &
                                     (play_df.event == 'pass_arrived'),
                                     ['x', 'y']].iloc[0].to_numpy(dtype=dt)
        print(
            f"True Pass: t: {pass_forward_frame} x:{true_x} y:{true_y} T:{true_T_frames/10}"
        )
        true_T_idx = np.rint(true_T_frames).astype(int) - 1
        true_x_idx = np.clip((true_x).astype(int), 0,
                             len(xx[0]) - 1)  # this is a bug
        true_y_idx = np.clip((true_y).astype(int) + 1, 0,
                             len(xx) - 1)  # this is a bug
        true_f_idx = np.ravel_multi_index((true_y_idx, true_x_idx), xx.shape)
        (true_x_idxd,
         true_y_idxd), true_T_idxd = field_locs[true_f_idx], T[true_T_idx]
        print(
            f"True Pass idxs: t: {pass_forward_frame} x:{true_x_idx} y:{true_y_idx} f:{true_f_idx} T:{true_T_idx}"
        )
        print(
            f"True Pass idxd: t: {pass_forward_frame} x:{true_x_idxd} y:{true_y_idxd} T:{true_T_idxd}"
        )
    else:
        print(f"No True Pass Found: No pass_arrived event \n")

    if simulatePass != None:
        sim_frame, true_x, true_y, true_T = simulatePass
        print(f"Simming Pass: t: {sim_frame} x:{true_x} y:{true_y} T:{true_T}")
        true_T_idx = np.rint(true_T * 10).astype(int) - 1
        true_x_idx = np.clip(dt(true_x).astype(int), 0,
                             len(xx[0]) - 1)  # this is a bug
        true_y_idx = np.clip(dt(true_y).astype(int) + 1, 0,
                             len(xx) - 1)  # this is a bug
        true_f_idx = np.ravel_multi_index((true_y_idx, true_x_idx), xx.shape)
        (true_x_idxd,
         true_y_idxd), true_T_idxd = field_locs[true_f_idx], T[true_T_idx]
        print(
            f"Sim Pass idxs: t: {pass_forward_frame} x:{true_x_idx} y:{true_y_idx} f:{true_f_idx} T:{true_T_idx}"
        )
        print(
            f"Sim Pass idxd: t: {pass_forward_frame} x:{true_x_idxd} y:{true_y_idxd} T:{true_T_idxd}"
        )

    # per play epa model
    def getEPAModel():
        epvals = np.array([7, -7, 3, -3, 2, -2, 0])
        joined_df = pbp_joined[(pbp_joined.playId == play_id)
                               & (pbp_joined.gameId == game_id)]
        epa_df = pd.DataFrame({'play_endpoint_x': x})

        test = {}
        for feat in epa_model.feature_names:
            test[feat] = [joined_df.iloc[0][feat]]
            epa_df[feat] = joined_df.iloc[0][feat]

        first_df = pd.DataFrame(test)

        dtest = treelite_runtime.Batch.from_npy2d(
            first_df[cols_when_model_builds_ep].values)
        ypred = epa_predictor.predict(dtest)
        ep = np.sum(ypred * epvals, axis=1)
        epa_df["before_play_ep"] = ep[0]
        ###### EP FOR A INCOMPLETE #######
        epa_df_incomp = epa_df.copy(deep=True)
        old_down = joined_df.iloc[0]['down_x']
        epa_df_incomp['isFirstDown'] = 0
        for d in range(1, 6):
            epa_df_incomp['down%d' % d] = 1 if (d == old_down + 1) else 0
        # offense is other team inverted if turnover on downs
        epa_df_incomp['yardline_100'] = np.where(
            epa_df_incomp.down5 == 1, 100 - epa_df_incomp['yardline_100'],
            epa_df_incomp['yardline_100'])
        epa_df_incomp['ydstogo'] = np.where(epa_df_incomp.down5 == 1, 10,
                                            epa_df_incomp['ydstogo'])
        epa_df_incomp['down1'] = np.where(epa_df_incomp.down5 == 1, 1,
                                          epa_df_incomp['down1'])
        dtest = treelite_runtime.Batch.from_npy2d(
            epa_df_incomp[cols_when_model_builds_ep].values)
        ypred = epa_predictor.predict(dtest)
        ep = np.sum(ypred * epvals, axis=1)
        epa_df['xep_inc'] = ep
        epa_df['xepa_inc'] = np.where(
            epa_df_incomp.down5 == 1,
            -epa_df['xep_inc'] - epa_df_incomp['before_play_ep'],
            epa_df['xep_inc'] - epa_df_incomp['before_play_ep'])

        ###### EP FOR A CATCH #######

        epa_df['los'] = 110 - epa_df['yardline_100']
        epa_df['first_down_line'] = epa_df['los'] + epa_df["ydstogo"]
        epa_df['expected_end_up_line'] = epa_df['play_endpoint_x']

        epa_df['isFirstDown'] = 0
        epa_df['isFirstDown'] = np.where(
            epa_df['expected_end_up_line'] >= epa_df['first_down_line'], 1, 0)

        epa_df['yardline_100'] = np.round(110 - epa_df['expected_end_up_line'])
        epa_df['yardline_100'] = np.clip(epa_df['yardline_100'], 0, 100)
        epa_df['ydstogo'] = epa_df['first_down_line'] - epa_df[
            'expected_end_up_line']
        epa_df['ydstogo'] = np.where(epa_df['isFirstDown'] == 1, 10,
                                     epa_df['ydstogo'])
        old_down = joined_df.iloc[0]['down_x']

        for d in range(1, 6):
            epa_df['down%d' % d] = 1 if (d == old_down + 1) else 0

        epa_df['down1'] = np.where(epa_df['isFirstDown'] == 1, 1,
                                   epa_df['down1'])
        epa_df['down2'] = np.where(epa_df['isFirstDown'] == 1, 0,
                                   epa_df['down2'])
        epa_df['down3'] = np.where(epa_df['isFirstDown'] == 1, 0,
                                   epa_df['down3'])
        epa_df['down4'] = np.where(epa_df['isFirstDown'] == 1, 0,
                                   epa_df['down4'])
        epa_df['down5'] = np.where(
            epa_df['isFirstDown'] == 1, 0,
            epa_df['down5'])  # down 5 means turnover on downs

        # offense is other team inverted if turnover on downs
        epa_df['yardline_100'] = np.where(epa_df.down5 == 1,
                                          100 - epa_df['yardline_100'],
                                          epa_df['yardline_100'])
        epa_df['ydstogo'] = np.where(epa_df.down5 == 1, 10, epa_df['ydstogo'])
        epa_df['down1'] = np.where(epa_df.down5 == 1, 1, epa_df['down1'])

        ### UPDATE EPA VARIABLES ###

        dtest = treelite_runtime.Batch.from_npy2d(
            epa_df[cols_when_model_builds_ep].values)
        ypred = epa_predictor.predict(dtest)
        ep = np.sum(ypred * epvals, axis=1)
        epa_df['xep'] = ep  # ep after play
        # SCORE SAFETIES
        epa_df['xep'] = np.where(epa_df['play_endpoint_x'] <= 10, -2,
                                 epa_df['xep'])
        # SCORE Tds
        epa_df['xep'] = np.where(epa_df['play_endpoint_x'] >= 110, 7,
                                 epa_df['xep'])

        epa_df['xepa'] = np.where(
            epa_df.down5 == 1, -epa_df['xep'] - epa_df['before_play_ep'],
            epa_df['xep'] - epa_df['before_play_ep'])  # if turnover

        only_vals = epa_df[[
            "play_endpoint_x", "xep", "xepa", "xep_inc", "xepa_inc"
        ]].rename(columns={
            'xep': 'xep_comp',
            'xepa': 'xepa_comp'
        })  # THIS CONTAINS THE EPA VALUES BASED ON PLAY ENDPOINT
        # breakpoint()
        return only_vals

    epa_df = getEPAModel()

    # input: tracking data for a single frame
    # output: frame_eppa (F, T)... (writes intermediate F,T to disk)

    def frame_eppa(frame_id):
        nonlocal play_df

        frame_df = play_df.loc[play_df.frameId == frame_id].reset_index()
        ball_start = frame_df.loc[frame_df.position == 'QB',
                                  ['x', 'y']].iloc[0].to_numpy(dtype=dt)
        t = frame_df.frames_since_snap.iloc[0]
        frame_df = frame_df.loc[(frame_df.nflId != 0) & (
            frame_df.position != 'QB')]  # remove ball and qb from df

        reach_vecs = (field_locs - ball_start).astype(dt)  # (F, 2)

        frame_df = frame_df.drop_duplicates(
            subset='nflId').sort_values('nflId').reset_index()

        # project motion by reaction time
        frame_df['v_x_r'] = frame_df.a_x * params.reax_t + frame_df.v_x
        frame_df['v_y_r'] = frame_df.a_y * params.reax_t + frame_df.v_y
        frame_df['v_r_mag'] = np.linalg.norm(np.array(
            [frame_df.v_x_r, frame_df.v_y_r], dtype=dt),
                                             axis=0)
        frame_df['v_r_theta'] = np.arctan2(frame_df.v_y_r, frame_df.v_x_r)
        frame_df[
            'x_r'] = frame_df.x + frame_df.v_x * params.reax_t + 0.5 * frame_df.a_x * params.reax_t**2
        frame_df[
            'y_r'] = frame_df.y + frame_df.v_y * params.reax_t + 0.5 * frame_df.a_y * params.reax_t**2

        player_teams = frame_df['team_pos'].to_numpy()  # J,
        player_team_names = frame_df['teamAbbr'].to_numpy()  # J,
        player_ids = frame_df['nflId'].to_numpy()
        player_names = frame_df['displayName'].to_numpy()
        reaction_player_locs = frame_df[['x_r',
                                         'y_r']].to_numpy(dtype=dt)  # (J, 2)
        reaction_player_vels = frame_df[['v_x_r',
                                         'v_y_r']].to_numpy(dtype=dt)  # (J,2)

        # intercept vector between each player and field location
        int_d_vec = field_locs[:, None, :] - reaction_player_locs  # F, J, 2
        int_d_mag = np.linalg.norm(int_d_vec, axis=2)  # F, J
        int_d_theta = np.arctan2(int_d_vec[..., 1], int_d_vec[..., 0])
        # projecting player velocity on d_vec to get initial speed along d_vec
        int_s0 = np.clip(
            np.sum(int_d_vec * reaction_player_vels, axis=2) / int_d_mag,
            -params.s_max, params.s_max)  # F, J,

        # calculate time to int to ball loc on d_vec based on phys model
        t_lt_smax = (params.s_max - int_s0) / params.a_max  # F, J,
        d_lt_smax = t_lt_smax * ((int_s0 + params.s_max) / 2)  # F, J,
        # if accelerating would overshoot, then t = -v0/a + sqrt(v0^2/a^2 + 2x/a) (from kinematics)
        t_lt_smax = np.where(
            d_lt_smax > int_d_mag, -int_s0 / params.a_max +
            np.sqrt((int_s0 / params.a_max)**2 + 2 * int_d_mag / params.a_max),
            t_lt_smax)
        d_lt_smax = np.clip(d_lt_smax, 0, int_d_mag)
        d_at_smax = int_d_mag - d_lt_smax  # F, J,
        t_at_smax = d_at_smax / params.s_max  # F, J,
        t_tot = t_lt_smax + t_at_smax + params.reax_t  # F, J,

        # int success if T-t_tot = dT <  0. Put through sigmoid to add temporal uncertainty around
        int_dT = T[None, :, None] - t_tot[:, None, :]  # F, T, J
        p_int = (1 / (1. + np.exp(
            -np.pi / np.sqrt(3.0) / params.tti_sigma * int_dT, dtype=dt))
                 )  # F, T, J
        p_int_def = 1 - np.prod(
            (1 - p_int[:, :, (player_teams == 'DEF')]), axis=-1)  # F, T
        p_int_off = 1 - np.prod(
            (1 - p_int[:, :, (player_teams == 'OFF')]), axis=-1)  # F, T
        p_int_off_adj = p_int_off * (1 - p_int_def)
        # adjusting indiv p_int to renormalize sum
        p_int_ind = p_int.copy()
        p_int_ind[:, :, player_teams == 'DEF'] *= (
            p_int_def / np.sum(p_int_ind, where=(player_teams == 'DEF')))[...,
                                                                          None]
        p_int_ind[:, :, player_teams == 'OFF'] *= (
            p_int_off_adj /
            np.sum(p_int_ind, where=(player_teams == 'OFF')))[..., None]

        # projected locations at T (F, T, J)
        d_proj = np.select([
            T[None, :, None] <= params.reax_t, T[None, :, None] <=
            (t_lt_smax + params.reax_t)[:, None, :], True
        ], [
            0, (int_s0[:, None, :] *
                (T[None, :, None] - params.reax_t)) + 0.5 * params.a_max *
            (T[None, :, None] - params.reax_t)**2,
            d_lt_smax[:, None, :] + params.s_max *
            (T[None, :, None] - t_lt_smax[:, None, :] - params.reax_t)
        ])
        d_proj = np.minimum(
            d_proj,
            int_d_mag[:,
                      None, :])  # no player is going to purposefully overshoot

        s_proj = np.select([
            T[None, :, None] <= params.reax_t, T[None, :, None] <=
            (t_lt_smax + params.reax_t)[:, None, :], T[None, :, None] <=
            (t_lt_smax + t_at_smax + params.reax_t)[:, None, :], True
        ], [
            int_s0[:, None, :], int_s0[:, None, :] + params.a_max *
            (T[None, :, None] - params.reax_t), params.s_max, params.s_max
        ])

        x_proj = reaction_player_locs[None, None, :, 0] + d_proj * np.cos(
            int_d_theta[:, None, :])  # (F, T, J)
        y_proj = reaction_player_locs[None, None, :, 1] + d_proj * np.sin(
            int_d_theta[:, None, :])  # (F, T, J)

        v_x_proj = s_proj * np.cos(int_d_theta[:, None, :])  # (F, T, J)
        v_y_proj = s_proj * np.sin(int_d_theta[:, None, :])  # (F, T, J)

        # input: qb_loc (2,), t=frames_after_snap (int)
        # output: (P(L,T)|t) int probability of each pass (F, T)
        def get_hist_trans_prob():
            """ P(L|t) """
            ball_start_idx = np.rint(ball_start).astype(int)
            # mask for zeroing out parts of the field that are too far to be thrown to per the L_given_t model
            L_t_mask = np.zeros_like(xx, dtype=dt)  # (Y, X)
            L_t_mask[max(ball_start_idx[1] +
                         y_min, 0):min(ball_start_idx[1] + y_max,
                                       len(y) - 1),
                     max(ball_start_idx[0] +
                         x_min, 0):min(ball_start_idx[0] + x_max,
                                       len(x) - 1)] = 1.
            L_t_mask = L_t_mask.flatten()  # (F,)
            # # we clip reach vecs to be used to index into L_given_t.
            # # eg if qb is far right, then the left field will be clipped to y=-39 and later zeroed out
            # reach_vecs_int = np.rint(reach_vecs).astype(int)

            # clipped_reach_vecs = np.stack((np.clip(reach_vecs_int[:,0], x_min, x_max),
            #                               np.clip(-reach_vecs_int[:,1], y_min, y_max)))  # (2, F)
            # t_i = max(t-t_min, 0)
            # L_given_t = L_given_ts[t_i, clipped_reach_vecs[1]-y_min, clipped_reach_vecs[0]-x_min] * L_t_mask  # (F,) ; index with y and then x
            L_given_t = L_t_mask  # changed L_given_t to uniform after discussion
            L_given_t /= L_given_t.sum(
            )  # renormalize since part of L|t may have been off field
            """ P(T|L) """
            # we find T|L for sufficiently close spots (1 < L <= 60)
            reach_dist_int = np.rint(np.linalg.norm(
                reach_vecs, axis=1)).astype(int)  # (F,)
            reach_dist_in_bounds_idx = (reach_dist_int > 1) & (reach_dist_int
                                                               <= 60)
            reach_dist_in_bounds = reach_dist_int[reach_dist_in_bounds_idx]
            # yards 1-60 map to indices 0-59 so subtract 1 to get index
            # spots with dist 0 shouldn't wrap around to index -1 so clip
            T_given_L_subset = T_given_Ls[np.clip(
                reach_dist_in_bounds - 1, 0, 59
            )]  # (F~, T) ; F~ is subset of F that is in [1, 60] yds from ball
            T_given_L = np.zeros((len(field_locs), len(T)), dtype=dt)  # (F, T)
            # fill in the subset of values computed above
            T_given_L[reach_dist_in_bounds_idx] = T_given_L_subset

            L_T_given_t = L_given_t[:, None] * T_given_L  # (F, T)
            L_T_given_t /= L_T_given_t.sum(
            )  # normalize all passes after some have been chopped off
            return L_T_given_t

        def get_ppc():
            # use p_int as memoized values for integration

            # trajectory integration
            g = 10.72468  # y/s/s
            dx = reach_vecs[:, 0]  # F
            dy = reach_vecs[:, 1]  # F
            vx = dx[:, None] / T[None, :]  # F, T
            vy = dy[:, None] / T[None, :]  # F, T
            vz_0 = (T * g) / 2  # T

            # note that idx (i, j, k) into below arrays is invalid when j < k
            traj_ts = np.tile(T, (len(field_locs), len(T), 1))  # (F, T, T)
            traj_locs_x_idx = np.rint(
                np.clip((ball_start[0] + vx[:, :, None] * T), 0,
                        len(x) - 1)).astype(int)  # F, T, T
            traj_locs_y_idx = np.rint(
                np.clip((ball_start[1] + vy[:, :, None] * T), 0,
                        len(y) - 1)).astype(int)  # F, T, T
            traj_locs_z = 2.0 + vz_0[
                None, :,
                None] * traj_ts - 0.5 * g * traj_ts * traj_ts  # F, T, T
            path_idxs = np.ravel_multi_index(
                np.stack((traj_locs_y_idx, traj_locs_x_idx)).reshape(2, -1),
                xx.shape)  # (F*T*T,)
            traj_t_idxs = np.rint(10 * traj_ts - 1).flatten().astype(
                int)  # (F, T, T)
            # TODO
            ppi_ind_dt = p_int_ind[path_idxs, traj_t_idxs]  # F*T*T, J
            ppi_ind_dt = ppi_ind_dt.reshape(
                (*traj_locs_x_idx.shape,
                 len(reaction_player_locs)))  # F, T, T, J
            # ppi_off_dt = p_int_off[path_idxs, traj_t_idxs]  # F*T*T,
            # ppi_off_dt = ppi_off_dt.reshape(traj_locs_x_idx.shape)  # F, T, T
            # ppi_def_dt = p_int_def[path_idxs, traj_t_idxs]  # F*T*T,
            # ppi_def_dt = ppi_def_dt.reshape(traj_locs_x_idx.shape)  # F, T, T
            # ppi_off_adj_dt = p_int_off_adj[path_idxs, traj_t_idxs]  # F*T*T,
            # ppi_off_adj_dt = ppi_off_adj_dt.reshape(traj_locs_x_idx.shape)  # F, T, T

            # account for ball height on traj and normalize each locations int probability
            lambda_z = np.where(
                (traj_locs_z < params.z_max) & (traj_locs_z > params.z_min), 1,
                0)  # F, T, T # maybe change this to a normal distribution
            ppi_ind_dt = ppi_ind_dt * lambda_z[:, :, :, None]  # F, T, T
            # ppi_off_dt = ppi_off_dt * lambda_z[:, :, :, None]  # F, T, T
            # ppi_off_adj_dt = ppi_off_adj_dt * lambda_z[:, :, :, None]  # F, T, T
            # ppi_def_dt = ppi_def_dt * lambda_z[:, :, :, None]  # F, T, T

            # P(ball is still in play at t)
            ball_in_play_traj = np.cumprod(1 - ppi_ind_dt, axis=-1)
            ball_in_play_traj = np.roll(ball_in_play_traj, 1,
                                        axis=-1)  # F, T, T
            ball_in_play_traj[:, :, 0] = 1
            # ppi_def_adj_dt = ball_in_play_traj * ppi_def_dt  # F, T, T
            # ppi_off_adj_dt = ball_in_play_traj * ppi_off_adj_dt  # F, T, T
            ppi_ind_adj_dt = ball_in_play_traj[...,
                                               None] * ppi_ind_dt  # F, T, T, J

            # ppi_def_traj = np.cumsum(ppi_def_adj_dt, axis=-1)
            # ppi_def_traj = np.einsum('ijj->ij', ppi_def_traj)  # (F, T)
            # ppi_off_traj = np.cumsum(ppi_off_adj_dt, axis=-1)
            # ppi_off_traj = np.einsum('ijj->ij', ppi_off_traj)  # (F, T)
            ppi_ind_traj = np.cumsum(ppi_ind_adj_dt, axis=-2)
            ppi_ind_traj = np.einsum('ijjk->ijk', ppi_ind_traj)  # (F, T, J)
            ppi_off_traj = np.sum(ppi_ind_traj,
                                  where=(player_teams == 'OFF'),
                                  axis=-1)  # (F, T)
            ppi_def_traj = np.sum(ppi_ind_traj,
                                  where=(player_teams == 'DEF'),
                                  axis=-1)  # (F, T)
            ppi_rem_traj = 1 - ppi_def_traj - ppi_off_traj  # (F, T)

            return ppi_off_traj, ppi_def_traj, ppi_ind_traj

        def get_xyac():
            x_proj_def = x_proj[:, :, player_teams == "DEF"]  # F, T, J
            v_proj_def = s_proj[:, :, player_teams == "DEF"]
            y_proj_def = y_proj[:, :, player_teams == "DEF"]

            x_proj_relv = x_proj_def - field_locs[:, None, None,
                                                  0]  # F, T, J #GET RELATIVE COORDS
            y_proj_relv = y_proj_def - field_locs[:, None, None,
                                                  1]  # F, T, J #GET RELATIVE COORDS

            distances_to_ball = np.stack((x_proj_relv, y_proj_relv),
                                         axis=-1)  # F, T, J, 2
            distance_mags = np.linalg.norm(distances_to_ball,
                                           axis=-1)  # F, T, J

            sorted_indices = np.argsort(distance_mags, axis=2)  # F, T, J

            distance_mags = np.take_along_axis(distance_mags,
                                               sorted_indices,
                                               axis=2)  # F, T, J
            x_proj_sorted = np.take_along_axis(x_proj_relv,
                                               sorted_indices,
                                               axis=2)
            y_proj_sorted = np.take_along_axis(y_proj_relv,
                                               sorted_indices,
                                               axis=2)
            v_proj_sorted = np.take_along_axis(v_proj_def,
                                               sorted_indices,
                                               axis=2)

            just_top_5_distances = distance_mags[:, :, 0:5]  # F, T, 5
            just_top_5_x_proj = x_proj_sorted[:, :, 0:5]  # F, T, 5
            just_top_5_y_proj = y_proj_sorted[:, :, 0:5]  # F, T, 5
            just_top_5_v_proj = v_proj_sorted[:, :, 0:5]  # F, T, 5

            just_top_5_distances = np.reshape(
                just_top_5_distances,
                (-1, just_top_5_distances.shape[2]))  # (F*T, 5)
            just_top_5_x_proj = np.reshape(just_top_5_x_proj,
                                           just_top_5_distances.shape)
            just_top_5_y_proj = np.reshape(just_top_5_y_proj,
                                           just_top_5_distances.shape)
            just_top_5_v_proj = np.reshape(just_top_5_v_proj,
                                           just_top_5_distances.shape)

            endpoints = np.repeat(field_locs, repeats=len(T), axis=0)  # FxT, 2
            # assert((field_locs[:, None, :]+np.zeros_like(T[None, None, :])).reshape(end))
            times = np.repeat(T[None, :], repeats=len(field_locs), axis=0)
            times_shaped = times.reshape(
                (times.shape[0] * times.shape[1]))  # FxT, 1
            value_array = np.array(
                [-2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 30])

            field_df = pd.DataFrame({
                'pass_endpoint_x':
                endpoints[:, 0],
                'pass_endpoint_y':
                endpoints[:, 1],
                'frame_thrown':
                t,
                'time_of_flight':
                times_shaped,
                '1-closest-defender-distance':
                just_top_5_distances[:, 0],
                '2-closest-defender-distance':
                just_top_5_distances[:, 1],
                '3-closest-defender-distance':
                just_top_5_distances[:, 2],
                '4-closest-defender-distance':
                just_top_5_distances[:, 3],
                '5-closest-defender-distance':
                just_top_5_distances[:, 4],
                '1-closest-defender-x':
                just_top_5_x_proj[:, 0],
                '2-closest-defender-x':
                just_top_5_x_proj[:, 1],
                '3-closest-defender-x':
                just_top_5_x_proj[:, 2],
                '4-closest-defender-x':
                just_top_5_x_proj[:, 3],
                '5-closest-defender-x':
                just_top_5_x_proj[:, 4],
                '1-closest-defender-y':
                just_top_5_y_proj[:, 0],
                '2-closest-defender-y':
                just_top_5_y_proj[:, 1],
                '3-closest-defender-y':
                just_top_5_y_proj[:, 2],
                '4-closest-defender-y':
                just_top_5_y_proj[:, 3],
                '5-closest-defender-y':
                just_top_5_y_proj[:, 4],
                '1-closest-defender-speed':
                just_top_5_v_proj[:, 0],
                '2-closest-defender-speed':
                just_top_5_v_proj[:, 1],
                '3-closest-defender-speed':
                just_top_5_v_proj[:, 2],
                '4-closest-defender-speed':
                just_top_5_v_proj[:, 3],
                '5-closest-defender-speed':
                just_top_5_v_proj[:, 4],
                "y":
                endpoints[:, 1]
            })
            # CALCULTE XYAC

            dtest = treelite_runtime.Batch.from_npy2d(
                field_df[cols_when_model_builds].values)
            ypred = xyac_predictor.predict(dtest)
            y_vals = np.sum(ypred * value_array, axis=1)
            field_df['xyac'] = y_vals
            field_df['play_endpoint_x'] = np.round(field_df['xyac'] +
                                                   field_df['pass_endpoint_x'])
            field_df['play_endpoint_x'] = field_df['play_endpoint_x'] + .5
            field_df['play_endpoint_x'] = np.clip(field_df['play_endpoint_x'],
                                                  0.5, 119.5)

            return field_df[[
                'pass_endpoint_x', 'pass_endpoint_y', 'time_of_flight', 'xyac',
                'play_endpoint_x'
            ]]

        nonlocal epa_df

        # completion model
        ppc_off, ppc_def, ppc_ind = get_ppc()  # (F, T), (F, T), (F, T, J)

        # value model
        epa_xyac_df = get_xyac().merge(epa_df,
                                       how='left',
                                       on='play_endpoint_x')
        xyac = epa_xyac_df.xyac.to_numpy().reshape(ppc_off.shape)
        # end_x = epa_xyac_df.play_endpoint_x.to_numpy().reshape(ppc_off.shape)
        xepa_comp = epa_xyac_df.xepa_comp.to_numpy().reshape(
            ppc_off.shape)  # F, T
        xepa_inc = epa_xyac_df.xepa_inc.iloc[0]
        xepa_diff = xepa_comp - xepa_inc
        # assert(h_trans_prob.shape == ppc_off.shape)
        # breakpoint()

        # transition model
        h_trans_prob = get_hist_trans_prob()  # (F, T)
        trans = h_trans_prob * np.power(ppc_off, params.alpha)  # F, T
        trans /= trans.sum()

        # output metrics (eppa1 uses ppc_off as catch prob, eppa2 uses catch_prob)
        ind_eppa1_wo_value = ppc_ind * trans[..., None]  # F, T, J
        ind_eppa1 = ind_eppa1_wo_value * xepa_diff[..., None]  # F, T, J
        # ind_eppa2_wo_value = catch_prob_ind * trans[..., None]  # F, T, J
        # ind_eppa2 = ind_eppa2_wo_value * xepa_diff[..., None]  # F, T, J
        eppa1_pass_val = (ppc_off * xepa_comp) + (1 - ppc_off) * xepa_inc
        eppa1 = eppa1_pass_val * trans  # F, T
        # eppa2_pass_val = (catch_prob_off*xepa_comp)+(1-catch_prob_off)*xepa_inc
        # eppa2 = eppa2_pass_val*trans  # F, T

        eppa1_wo_value = ppc_off * trans
        # eppa2_wo_value = catch_prob_off*trans

        # maxEppa1Val = eppa1_pass_val[np.unravel_index(np.argmax(eppa1, axis=None), eppa1.shape)]
        # maxEppa2Val = eppa2_pass_val[np.unravel_index(np.argmax(eppa2, axis=None), eppa2.shape)]

        field_df = pd.DataFrame()
        player_stats_df = pd.DataFrame()
        passes_df = pd.DataFrame()
        proj_df = pd.DataFrame()

        if viz_true_proj and true_pass_found:
            proj_df['nflId'] = frame_df['nflId']
            proj_df['reax_x'] = frame_df['x_r']
            proj_df['reax_y'] = frame_df['y_r']
            proj_df['reax_v_x'] = frame_df['v_x_r']
            proj_df['reax_v_y'] = frame_df['v_y_r']

            proj_df['d_vec_x'] = int_d_vec[true_f_idx, :, 0]
            proj_df['d_vec_y'] = int_d_vec[true_f_idx, :, 1]
            proj_df['d_mag'] = int_d_mag[true_f_idx]
            proj_df['int_s0'] = int_s0[true_f_idx]

            proj_df['t_lt_smax'] = t_lt_smax[true_f_idx]
            proj_df['d_lt_smax'] = d_lt_smax[true_f_idx]
            proj_df['t_at_smax'] = t_at_smax[true_f_idx]
            proj_df['d_at_smax'] = d_at_smax[true_f_idx]
            proj_df['t_tot'] = t_tot[true_f_idx]

            proj_df['int_dT'] = int_dT[true_f_idx, true_T_idx]
            proj_df['p_int'] = p_int[true_f_idx, true_T_idx]
            proj_df['p_int_adj'] = p_int_adj[true_f_idx, true_T_idx]

            proj_df['d_proj'] = d_proj[true_f_idx, true_T_idx]  # J
            proj_df['s_proj'] = s_proj[true_f_idx, true_T_idx]  # J

            proj_df['proj_x'] = x_proj[true_f_idx, true_T_idx]  # J
            proj_df['proj_y'] = y_proj[true_f_idx, true_T_idx]  # J
            proj_df['proj_v_x'] = v_x_proj[true_f_idx, true_T_idx]  # J
            proj_df['proj_v_y'] = v_y_proj[true_f_idx, true_T_idx]  # J

            proj_df['ppc_ind'] = ppc_ind[true_f_idx, true_T_idx]
            # proj_df['catch_prob'] = catch_prob_ind[true_f_idx, true_T_idx]  # only valid for off players

            proj_df['frameId'] = frame_id

        if save_np:
            week = games_df.loc[games_df.gameId ==
                                game_id].week.to_numpy()[0].item()
            dir = out_dir_path.format(f'{week}/{game_id}/{play_id}')
            Path(dir).mkdir(parents=True, exist_ok=True)
            # np.savez_compressed(f'{dir}/{frame_id}', players_ind_info=ind_info,
            #                     ppc_ind=ppc_ind, h_trans=h_trans_prob, xepa=xepa, eppa_ind=eppa_ind)
            # np.savez_compressed(f'{dir}/{frame_id}', ind_info=ind_info, eppa_ind=eppa_ppc_ind)

        if stats_df:
            # ind_eppa1 = ind_eppa1.sum(axis=(0, 1))  # J
            # ind_eppa1_wo_value = ind_eppa1_wo_value.sum(axis=(0, 1))  # J
            player_stats_df = pd.DataFrame(
                {
                    'gameId': game_id,
                    'playId': play_id,
                    'frameId': frame_id,
                    'frame_after_snap': t,
                    'nflId': player_ids,
                    'displayName': player_names,
                    'team': player_team_names,
                    'team_pos': player_teams,
                    'ind_eppa1': ind_eppa1.sum(axis=(0, 1)),
                    'ind_eppa1_wo_value': ind_eppa1_wo_value.sum(axis=(0, 1)),
                },
                #  'ind_eppa2': ind_eppa2.sum(axis=(0, 1)),
                #  'ind_eppa2_wo_value': ind_eppa2_wo_value.sum(axis=(0, 1))},
                index=player_ids)

            off_team_name = play_df.loc[play_df.team_pos ==
                                        'OFF'].teamAbbr.iloc[0]
            def_team_name = play_df.loc[play_df.team_pos ==
                                        'DEF'].teamAbbr.iloc[0]

            # fill out passes df
            row = {
                'gameId': game_id,
                'playId': play_id,
                'frameId': frame_id,
                'frames_after_snap': t,
                'off_team': off_team_name,
                'def_team': def_team_name,
                'eppa1_tot': eppa1.sum(),  # 'eppa2_tot': eppa2.sum(),
                'xepa_inc': xepa_inc
            }

            # for name, arr in {'eppa1': eppa1, 'eppa2': eppa2, 'ppc_off': ppc_off, 'catch_prob': catch_prob_off, 'eppa1_pass_val': eppa1_pass_val,
            #                   'eppa2_pass_val': eppa2_pass_val, 'eppa1_wo_value': eppa1_wo_value, 'eppa2_wo_value': eppa2_wo_value}.items():
            for name, arr in {
                    'eppa1': eppa1,
                    'ppc_off': ppc_off,
                    'eppa1_pass_val': eppa1_pass_val,
                    'eppa1_wo_value': eppa1_wo_value
            }.items():
                f, T_idx = np.unravel_index(arr.argmax(), arr.shape)
                end_x, end_y = field_locs[f]
                row[f"max_{name}_x"] = end_x
                row[f"max_{name}_y"] = end_y
                row[f"max_{name}_T"] = T[T_idx]
                # row[f"max_{name}_catch_prob"] = catch_prob_off[f, T_idx]
                row[f"max_{name}_ppc_off"] = ppc_off[f, T_idx]
                row[f"max_{name}_pint_off"] = p_int_off[f, T_idx]
                row[f"max_{name}_ppc_def"] = ppc_def[f, T_idx]
                row[f"max_{name}_pint_def"] = p_int_def[f, T_idx]
                row[f"max_{name}_xyac"] = xyac[f, T_idx]
                row[f"max_{name}_xepa_comp"] = xepa_comp[f, T_idx]
                row[f"max_{name}_trans"] = trans[f, T_idx]
                row[f"max_{name}_trans_tof"] = h_trans_prob[f, T_idx]
                row[f"max_{name}_eppa1"] = eppa1[f, T_idx]
                # row[f"max_{name}_eppa2"] = eppa2[f, T_idx]
                row[f"max_{name}_eppa1_xval"] = eppa1_pass_val[f, T_idx]
                # row[f"max_{name}_eppa2_xval"] = eppa2_pass_val[f, T_idx]
                row[f"max_{name}_eppa1_wo_value"] = eppa1_wo_value[f, T_idx]
                # row[f"max_{name}_eppa2_wo_value"] = eppa2_wo_value[f, T_idx]

            if (true_pass_found and frame_id == pass_forward_frame) or (
                    simulatePass and frame_id == sim_frame):
                row[f"true_x"] = true_x_idxd
                row[f"true_y"] = true_y_idxd
                row[f"true_T"] = true_T_idxd
                # row[f"true_catch_prob"] = catch_prob_off[true_f_idx, true_T_idx]
                row[f"true_ppc_off"] = ppc_off[true_f_idx, true_T_idx]
                row[f"true_pint_off"] = p_int_off[true_f_idx, true_T_idx]
                row[f"true_ppc_def"] = ppc_def[true_f_idx, true_T_idx]
                row[f"true_pint_def"] = p_int_def[true_f_idx, true_T_idx]
                row[f"true_xyac"] = xyac[true_f_idx, true_T_idx]
                row[f"true_xepa_comp"] = xepa_comp[true_f_idx, true_T_idx]
                row[f"true_xepa"] = xepa_comp[
                    true_f_idx,
                    true_T_idx] if true_pass_completed else xepa_inc
                row[f"true_trans"] = trans[true_f_idx, true_T_idx]
                row[f"true_trans_tof"] = h_trans_prob[true_f_idx, true_T_idx]
                row[f"true_eppa1"] = eppa1[true_f_idx, true_T_idx]
                # row[f"true_eppa2"] = eppa2[true_f_idx, true_T_idx]
                row[f"true_eppa1_xval"] = eppa1_pass_val[true_f_idx,
                                                         true_T_idx]
                # row[f"true_eppa2_xval"] = eppa2_pass_val[true_f_idx, true_T_idx]
                row[f"true_eppa1_wo_value"] = eppa1_wo_value[true_f_idx,
                                                             true_T_idx]
                # row[f"true_eppa2_wo_value"] = eppa2_wo_value[true_f_idx, true_T_idx]

            passes_df = pd.DataFrame(row, index=[t])

        if viz_df:
            field_df = pd.DataFrame({
                'frameId':
                frame_id,
                'ball_end_x':
                field_locs[:, 0],
                'ball_end_y':
                field_locs[:, 1],
                'eppa1m':
                eppa1.max(axis=1),
                'eppa1s':
                eppa1.sum(axis=1),
                'eppa1_val':
                eppa1_pass_val[np.arange(eppa1_pass_val.shape[0]),
                               eppa1.argmax(axis=1)],
                # 'eppa2': eppa2.max(axis=1),
                # 'p_int_off_only': p_int_off_only.max(axis=1),
                'p_int_off':
                p_int_off.max(axis=1),
                # 'p_int_adj_off': np.max(p_int_adj, axis=(1, 2), where=(player_teams=='OFF')),
                'ppc_off':
                ppc_off.max(axis=1),
                'ppc_def':
                ppc_def.max(axis=1),
                'eppa1_wo_value':
                eppa1_wo_value.max(axis=1),
                # 'eppa2_wo_value': eppa2_wo_value.max(axis=1),
                'eppa1_wo_trans':
                eppa1_pass_val.max(axis=1),
                # 'eppa2_wo_trans': eppa2_pass_val.max(axis=1),
                'xyac':
                xyac.max(axis=1),
                'xepa_comp':
                xepa_comp.max(axis=1) - xepa_inc,
                'xepa_inc':
                xepa_inc,
                'trans':
                trans.sum(axis=1),
            })
            field_df.loc[field_df.ball_end_x < ball_start[0] -
                         10, :] = np.nan  # remove backward passes
        # breakpoint()
        return field_df, passes_df, player_stats_df, proj_df

    field_dfs = pd.DataFrame()
    player_stats_df = pd.DataFrame()
    passes_df = pd.DataFrame()
    proj_df = pd.DataFrame()
    if pass_forward_frame < (min_t_frame + ball_snap_frame):
        return play_df, field_dfs, passes_df, player_stats_df

    if not simulatePass:
        for fid in tqdm(
                range(
                    min_t_frame + ball_snap_frame,
                    min(pass_forward_frame, max_t_frame + ball_snap_frame) +
                    1)):
            # for fid in tqdm(range(pass_forward_frame, pass_forward_frame+1)):
            field_df, passes, player_stats, projs = frame_eppa(fid)
            field_dfs = field_dfs.append(field_df, ignore_index=True)
            passes_df = passes_df.append(passes, ignore_index=True)
            player_stats_df = player_stats_df.append(player_stats,
                                                     ignore_index=True)
            proj_df = proj_df.append(projs, ignore_index=True)
    else:
        for fid in tqdm(range(sim_frame, sim_frame + 1)):
            # for fid in tqdm(range(pass_forward_frame, pass_forward_frame+1)):
            field_df, passes, player_stats, projs = frame_eppa(fid)
            field_dfs = field_dfs.append(field_df, ignore_index=True)
            passes_df = passes_df.append(passes, ignore_index=True)
            player_stats_df = player_stats_df.append(player_stats,
                                                     ignore_index=True)
            proj_df = proj_df.append(projs, ignore_index=True)

    if true_pass_found & viz_true_proj:
        play_df = pd.merge(play_df,
                           proj_df,
                           on=['frameId', 'nflId'],
                           how='left')

    if save_all_dfs:
        week = games_df.loc[games_df.gameId ==
                            game_id].week.to_numpy()[0].item()
        dir = out_dir_path.format(f'{week}/{game_id}/{play_id}')
        Path(dir).mkdir(parents=True, exist_ok=True)
        proj_df.to_pickle(f"{dir}/true_pass_player_proj.pkl", )
        passes_df.to_pickle(f"{dir}/passes.pkl", )
        player_stats_df.to_pickle(f"{dir}/player_stats.pkl", )
        field_dfs.to_pickle(f"{dir}/field_viz.pkl", )
    return play_df, field_dfs, passes_df, player_stats_df
コード例 #5
0
#                  params={'parallel_comp': 32}, verbose=True) #.so for ubuntu, .dylib for mac

# bst = joblib.load(join(get_repo_dir(), "analysis/models/in/epa_model_rishav_no_time.model"))
# xgb.plot_importance(bst)
# scores = bst.get_score(importance_type='gain')
# print(scores.keys())
# cols_when_model_builds = bst.feature_names
# print("ADDED NEW SHIT")

# model = treelite.Model.from_xgboost(bst)
# toolchain = 'gcc'
# model.export_lib(toolchain=toolchain, libpath=join(get_repo_dir(), 'analysis/models/in/epa_no_time_mymodel.so'),
#                  params={'parallel_comp': 32}, verbose=True) #.so for ubuntu, .dylib for mac

# file loading and prep
path_shared = join(get_repo_dir(), 'data/{}')

dt = np.float64

games_df = pd.read_csv(path_shared.format('games.csv'))
plays_df = pd.read_csv(path_shared.format('plays.csv'))
players_df = pd.read_csv(path_shared.format('players.csv'))
pbp_2018 = pd.read_csv(path_shared.format('play_by_play_2018.csv'),
                       low_memory=False)
pbp_joined = pd.merge(plays_df,
                      pbp_2018,
                      how="left",
                      left_on=["gameId", "playId"],
                      right_on=["old_game_id", "play_id"])

pbp_joined["retractable"] = np.where(
コード例 #6
0
import os
import sys
import shutil
from utils import get_repo_dir
from tqdm import tqdm

trans_dir = os.path.join(get_repo_dir(), 'data/transforms')
to_delete = []
for hash_dir in tqdm([f for f in os.scandir(trans_dir) if f.is_dir()]):
    if len(list(os.scandir(hash_dir))) != 200:
        to_delete.append(hash_dir)
if to_delete:
    if (len(sys.argv) > 1 and sys.argv[1] == 'DELETE' and input(
            f'Are you sure you want to delete {len(to_delete)} directories? (y/N): '
    ).lower() in ['y', 'yes']):
        for hash_dir in to_delete:
            print(f'Deleting directory {hash_dir.name}')
            shutil.rmtree(hash_dir.path)
    else:
        print(f'{len(to_delete)} incomplete directories found.')
        if input('Print? (y/N): ').lower() in ['y', 'yes']:
            for hash_dir in to_delete:
                print(hash_dir.name)

else:
    print('No incomplete directories found.')
コード例 #7
0
import pandas as pd
from models.play_eppa_gpu import *
from pathlib import Path
import traceback
import os
from tqdm import tqdm
from utils import get_repo_dir

WEEK_START = 1
WEEK_END = 2

out_dir_path = os.path.join(get_repo_dir(), 'output/{}')  # for cloud runs
path_shared = os.path.join(get_repo_dir(), 'data/{}')

# main loop
for week in range(WEEK_START, WEEK_END):
    track_df = pd.read_csv(
        path_shared.format(f'week{week}_norm.csv',
                           usecols=[
                               'nflId', 'displayName', 'position', 'team_pos',
                               'x', 'y', 'v_x', 'v_y', 'v_mag', 'v_theta',
                               'a_x', 'a_y', 'a_mag', 'a_theta'
                           ]))

    plays = sorted(
        list(
            set(
                map(
                    lambda x: (x[0].item(), x[1].item()),
                    track_df.groupby(['gameId', 'playId'],
                                     as_index=False).first()[[
コード例 #8
0
# -*- coding: utf-8 -*-
import os
import numpy as np
import pandas as pd

pd.options.mode.chained_assignment = None
import torch
from models.params import params
from models.consts import *
from models.frame_eppa import frame_eppa, set_device
from utils import get_repo_dir
from tqdm import tqdm

out_dir = os.path.join(get_repo_dir(), 'def_opt_output')
os.makedirs(out_dir, exist_ok=True)
out_dir_path = os.path.join(out_dir, '{}')  # for cloud runs
path_shared = os.path.join(get_repo_dir(), 'data/{}')

plan_horizon = 0.8  # how far ahead to project (in seconds) while optimizing path
plan_res = 0.1  # how long (in seconds) to execute plan. less than plan_horizon
frame_dt = 0.1  # how far apart (in seconds) the frames are
plan_res_linspace = np.linspace(frame_dt, plan_res,
                                np.round(plan_res /
                                         frame_dt).astype(int))[:, None]
# 10*dt is the number of frames to increment by
res_incr = int(10 * plan_res)
horizon_incr = int(10 * plan_horizon)
reduce_eppa_mode = 'sum'  # choose from {'sum', 'max', 'softmax'}
softmax_temp = 1000  # used for 'softmax' reduce_eppa_mode

week_game_plays = [