コード例 #1
0
ファイル: dataset.py プロジェクト: sevenHsu/HeadPoseNet
    def __getitem__(self, index):
        # data basename
        base_name, _ = self.data_list[index].split('.')

        # read image file
        img = Image.open(
            os.path.join(self.data_dir, "bg_imgs/" + base_name + ".jpg"))
        img = img.convert(self.image_mode)

        # get face bounding box
        pt2d = get_label_from_txt(
            os.path.join(self.data_dir, "bbox/" + base_name + ".txt"))
        x_min, y_min, x_max, y_max = pt2d

        # crop face loosely:k=0to 0.2
        k = np.random.random_sample() * 0.1
        x_min -= 0.6 * k * abs(x_max - x_min)
        y_min -= k * abs(y_max - y_min)
        x_max += 0.6 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))

        # Augmentation:Blur?
        if np.random.random_sample() < 0.05:
            img = img.filter(ImageFilter.BLUR)

        # Augmentation:Gray?
        if np.random.random_sample() < 0.5 and base_name.find('ID') < 0:
            img = img.convert('L').convert("RGB")

        # transform
        if self.transform:
            img = self.transform(img)

        # RGB2BGR
        img = img[np.array([2, 1, 0]), :, :]

        # get pose quat
        quat = get_label_from_txt(
            os.path.join(self.data_dir, "info/" + base_name + '.txt'))

        # face orientation vector
        vector_label = get_attention_vector(quat)
        vector_label = torch.FloatTensor(vector_label)

        # classification label
        classify_label = torch.LongTensor(np.digitize(vector_label, self.bins))
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return img, soft_label, vector_label, os.path.join(
            self.data_dir, "bg_imgs/" + base_name + ".jpg")
コード例 #2
0
ファイル: dataset.py プロジェクト: sevenHsu/HeadPoseNet
    def __getitem__(self, index):
        base_name = self.data_list[index][:-4]
        img = Image.open(
            os.path.join(self.data_dir, 'bg_imgs/' + base_name + '.jpg'))
        img = img.convert(self.image_mode)

        # get face bbox
        bbox_path = os.path.join(self.data_dir, 'bbox/' + base_name + '.txt')

        pt2d = get_label_from_txt(bbox_path)
        x_min = pt2d[0]
        y_min = pt2d[1]
        x_max = pt2d[2]
        y_max = pt2d[3]

        # Crop the face loosely
        k = 0.1
        x_min -= k * abs(x_max - x_min)
        y_min -= k * abs(y_max - y_min)
        x_max += k * abs(x_max - x_min)
        y_max += 0.3 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))

        # get pose angle pitch,yaw,roll(degrees)
        angle_path = os.path.join(self.data_dir,
                                  'angles/' + base_name + '.txt')
        angle = get_label_from_txt(angle_path)
        angle = torch.FloatTensor(angle)

        # get pose quat
        quat_path = os.path.join(self.data_dir, 'info/' + base_name + '.txt')
        quat = get_label_from_txt(quat_path)

        # Attention vector
        attention_vector = get_attention_vector(quat)
        vector_label = torch.FloatTensor(attention_vector)

        # classification label
        bins = np.array(range(-99, 100, self.bin_size)) / 99
        classify_label = torch.LongTensor(np.digitize(attention_vector,
                                                      bins))  # 1-num_classes
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        if self.transform is not None:
            img = self.transform(img)

        # RGB2BGR
        img = img[np.array([2, 1, 0]), :, :]

        return img, soft_label, vector_label, angle, torch.FloatTensor(
            pt2d), os.path.join(self.data_dir, 'bg_imgs/' + base_name + '.jpg')
コード例 #3
0
    def __getitem__(self, index):
        img = cv2.imread(self.data_list[index])

        if self.crop:
            # get face bbox
            bbox = bbox_300W(self.data_list[index].replace("imgs/","labels/").replace(".jpg",".txt"))
            x_min = bbox[0]
            y_min = bbox[1]
            x_max = bbox[2]
            y_max = bbox[3]
            img = img[y_min:y_max, x_min:x_max]

        img = cv2.resize(img, (self.input_size, self.input_size))

        img = img.swapaxes(1,2).swapaxes(0,1)
        img = np.ascontiguousarray(img)


        #get left vector, down vector and front vector
        left_vector, down_vector, front_vector  = Vector300W(self.data_list[index].replace("imgs/","labels/").replace(".jpg",".txt"))

        vector_label_l = torch.FloatTensor(left_vector)
        vector_label_d = torch.FloatTensor(down_vector)
        vector_label_f = torch.FloatTensor(front_vector)

        #----------------left vector-------------------------
        # classification label
        classify_label = torch.LongTensor(np.digitize(left_vector, self.bins)) # return the index
        classify_label = np.where(classify_label > self.num_classes, self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_l = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #-------------------down vector--------------
        classify_label = torch.LongTensor(np.digitize(down_vector, self.bins)) # return the index
        classify_label = np.where(classify_label > self.num_classes, self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_d = torch.stack([soft_label_x, soft_label_y, soft_label_z])


        #------------------front vector-------------------
        classify_label = torch.LongTensor(np.digitize(front_vector, self.bins)) # return the index
        classify_label = np.where(classify_label > self.num_classes, self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_f = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return torch.from_numpy(img), soft_label_l, soft_label_d, soft_label_f, vector_label_l, vector_label_d, vector_label_f, self.data_list[index], vector_label_l, vector_label_d, vector_label_f
コード例 #4
0
    def __getitem__(self, index):

        #base_name, _ = os.path.basename(self.data_list[index]).split('.')
        # read image file
        img = cv2.imread(self.data_list[index])

        #crop head part
        if self.crop:
            # get face bounding box
            bbox = bbox_300W(self.data_list[index].replace('imgs/','labels/').replace('.jpg','.txt'))
            x_min, y_min, x_max, y_max = bbox
            img = img[y_min:y_max, x_min:x_max]
        
        img = cv2.resize(img, (self.input_size, self.input_size))
        img = augment_data(img)

        #C,H,W to H,W,C
        img = img.swapaxes(1,2).swapaxes(0,1)
        img = np.ascontiguousarray(img)


        #get left vector, down vector, front vector
        left_vector, down_vector, front_vector  = Vector300W(self.data_list[index].replace('imgs/','labels/').replace('.jpg','.txt'))

        vector_label_l = torch.FloatTensor(left_vector)
        vector_label_d = torch.FloatTensor(down_vector)
        vector_label_f = torch.FloatTensor(front_vector)

        #----------------left vector-------------------------
        # classification label
        classify_label = torch.LongTensor(np.digitize(left_vector, self.bins)) # return the index
        classify_label = np.where(classify_label > self.num_classes, self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_l = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #-------------------down vector--------------
        classify_label = torch.LongTensor(np.digitize(down_vector, self.bins)) # return the index
        classify_label = np.where(classify_label > self.num_classes, self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_d = torch.stack([soft_label_x, soft_label_y, soft_label_z])


        #------------------front vector-------------------
        classify_label = torch.LongTensor(np.digitize(front_vector, self.bins)) # return the index
        classify_label = np.where(classify_label > self.num_classes, self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_f = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return torch.from_numpy(img), soft_label_l, soft_label_d, soft_label_f, vector_label_l, vector_label_d, vector_label_f, self.data_list[index], vector_label_l, vector_label_d, vector_label_f
コード例 #5
0
ファイル: dataset.py プロジェクト: gitxub/TriNet
    def __getitem__(self, index, crop=True):
        # data basename
        base_name, _ = self.data_list[index].split('.')

        # read image file
        img = Image.open(
            os.path.join(self.data_dir, "imgs/" + base_name + ".jpg"))
        img = img.convert(self.image_mode)

        if crop:

            # get face bounding box
            bbox = Bbox300W(
                os.path.join(self.data_dir, "labels/" + base_name + ".txt"))
            x_min, y_min, x_max, y_max = bbox

            img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))

        # Augmentation:Blur?
        if np.random.random_sample() < 0.05:
            img = img.filter(ImageFilter.BLUR)

        # Augmentation:Gray?
        if np.random.random_sample():
            img = img.convert('L').convert("RGB")

        # transform
        if self.transform:
            img = self.transform(img)

        # RGB2BGR
        img = img[np.array([2, 1, 0]), :, :]

        #get left vector, down vector, front vector
        left_vector, down_vector, front_vector = Vector300W(
            os.path.join(self.data_dir, "labels/" + base_name + '.txt'))

        vector_label_l = torch.FloatTensor(left_vector)
        vector_label_d = torch.FloatTensor(down_vector)
        vector_label_f = torch.FloatTensor(front_vector)

        #----------------left vector-------------------------
        # classification label
        classify_label = torch.LongTensor(np.digitize(
            left_vector, self.bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_l = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #-------------------down vector--------------
        classify_label = torch.LongTensor(np.digitize(
            down_vector, self.bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_d = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #------------------front vector-------------------
        classify_label = torch.LongTensor(np.digitize(
            front_vector, self.bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_f = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return img, soft_label_l, soft_label_d, soft_label_f, vector_label_l, vector_label_d, vector_label_f, os.path.join(
            self.data_dir, "imgs/" + base_name + ".jpg")
コード例 #6
0
ファイル: dataset.py プロジェクト: gitxub/TriNet
    def __getitem__(self, index, crop=True):
        base_name, _ = self.data_list[index].split('.')
        img = Image.open(
            os.path.join(self.data_dir, 'imgs/' + base_name + '.jpg'))
        img = img.convert(self.image_mode)

        if crop:
            # get face bbox
            bbox = Bbox300W(
                os.path.join(self.data_dir, 'labels/' + base_name + '.txt'))
            x_min = bbox[0]
            y_min = bbox[1]
            x_max = bbox[2]
            y_max = bbox[3]

            img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))

        if self.transform is not None:
            img = self.transform(img)

        # RGB2BGR
        img = img[np.array([2, 1, 0]), :, :]

        #get left vector, down vector and front vector
        left_vector, down_vector, front_vector = Vector300W(
            os.path.join(self.data_dir, "labels/" + base_name + '.txt'))

        vector_label_l = torch.FloatTensor(left_vector)
        vector_label_d = torch.FloatTensor(down_vector)
        vector_label_f = torch.FloatTensor(front_vector)

        bins = np.linspace(-1, 1, self.num_classes)

        #----------------left vector-------------------------
        # classification label
        classify_label = torch.LongTensor(np.digitize(
            left_vector, bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_l = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #-------------------down vector--------------
        classify_label = torch.LongTensor(np.digitize(
            down_vector, bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_d = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #------------------front vector-------------------
        classify_label = torch.LongTensor(np.digitize(
            front_vector, bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_f = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return img, soft_label_l, soft_label_d, soft_label_f, vector_label_l, vector_label_d, vector_label_f, os.path.join(
            self.data_dir, "imgs/" + base_name + ".jpg")
コード例 #7
0
ファイル: dataset.py プロジェクト: anArkitek/TriNet
    def __getitem__(self, index, crop=False):
        # data basename
        base_name, _ = self.data_list[index].split('.')

        # read image file
        img = Image.open(
            os.path.join(self.data_dir,
                         "dataset/bg_imgs/" + base_name + ".jpg"))
        img = img.convert(self.image_mode)

        if crop:

            # get face bounding box
            pt2d = get_label_from_txt(
                os.path.join(self.data_dir, "bbox/" + base_name + ".txt"))
            x_min, y_min, x_max, y_max = pt2d

            # crop face loosely:k=0to 0.2
            k = np.random.random_sample() * 0.1
            x_min -= 0.6 * k * abs(x_max - x_min)
            y_min -= k * abs(y_max - y_min)
            x_max += 0.6 * k * abs(x_max - x_min)
            y_max += 0.6 * k * abs(y_max - y_min)
            img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))

        # Augmentation:Blur?
        if np.random.random_sample() < 0.05:
            img = img.filter(ImageFilter.BLUR)

        # Augmentation:Gray?
        if np.random.random_sample() < 0.5 and base_name.find('ID') < 0:
            img = img.convert('L').convert("RGB")

        # transform
        if self.transform:
            img = self.transform(img)

        # RGB2BGR
        img = img[np.array([2, 1, 0]), :, :]

        # get pose quat
        #quat = get_label_from_txt(os.path.join(self.data_dir, "info/" + base_name + '.txt'))
        info = get_info_from_txt(
            os.path.join(self.data_dir, "info_all/" + base_name + '.txt'))
        # face orientation vector
        #vector_label = get_attention_vector(quat)

        #get one front vector
        #vector_label = angle2vector(os.path.join(self.data_dir, "info/" + base_name + '.txt'))
        #vector_label = torch.FloatTensor(vector_label)

        #get front vector and right vector
        front_vector, right_vector, up_vector = get_vectors(info)
        #print(np.dot(np.array(front_vector),np.array(right_vector)))
        #print(np.dot(np.array(front_vector),np.array(up_vector)))
        #print(np.dot(np.array(right_vector),np.array(up_vector)))

        vector_label_f = torch.FloatTensor(front_vector)
        vector_label_r = torch.FloatTensor(right_vector)
        vector_label_u = torch.FloatTensor(up_vector)

        #----------------front vector-------------------------
        # classification label
        classify_label = torch.LongTensor(np.digitize(
            front_vector, self.bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_f = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #-------------------right vector--------------
        classify_label = torch.LongTensor(np.digitize(
            right_vector, self.bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_r = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #------------------up vector-------------------
        classify_label = torch.LongTensor(np.digitize(
            up_vector, self.bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_u = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return img, soft_label_f, soft_label_r, soft_label_u, vector_label_f, vector_label_r, vector_label_u, os.path.join(
            self.data_dir, "dataset/bg_imgs/" + base_name + ".jpg")
コード例 #8
0
ファイル: dataset.py プロジェクト: anArkitek/TriNet
    def __getitem__(self, index, crop=False):
        base_name, _ = self.data_list[index].split('.')
        img = Image.open(
            os.path.join(self.data_dir,
                         'dataset/bg_imgs/' + base_name + '.jpg'))
        img = img.convert(self.image_mode)

        if crop:

            # get face bbox
            bbox_path = os.path.join(self.data_dir,
                                     'bbox/' + base_name + '.txt')

            pt2d = get_label_from_txt(bbox_path)
            x_min = pt2d[0]
            y_min = pt2d[1]
            x_max = pt2d[2]
            y_max = pt2d[3]

            # Crop the face loosely
            k = 0.1
            x_min -= k * abs(x_max - x_min)
            y_min -= k * abs(y_max - y_min)
            x_max += k * abs(x_max - x_min)
            y_max += 0.3 * k * abs(y_max - y_min)
            img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))

        # get pose angle pitch,yaw,roll(degrees) ANGLES NO NEEDED!!!
        #angle_path = os.path.join(self.data_dir, 'angles/' + base_name + '.txt')
        #angle = get_label_from_txt(angle_path)
        #angle = torch.FloatTensor(angle)

        if self.transform is not None:
            img = self.transform(img)

        # RGB2BGR
        img = img[np.array([2, 1, 0]), :, :]

        # get pose quat
        #quat = get_label_from_txt(os.path.join(self.data_dir, "info/" + base_name + '.txt'))
        info = get_info_from_txt(
            os.path.join(self.data_dir, "info_all/" + base_name + '.txt'))
        # face orientation vector
        #vector_label = get_attention_vector(quat)

        #get one front vector
        #vector_label = angle2vector(os.path.join(self.data_dir, "info/" + base_name + '.txt'))
        #vector_label = torch.FloatTensor(vector_label)

        #get front vector and right vector
        front_vector, right_vector, up_vector = get_vectors(info)
        #print(np.dot(np.array(front_vector),np.array(right_vector)))
        #print(np.dot(np.array(front_vector),np.array(up_vector)))
        #print(np.dot(np.array(right_vector),np.array(up_vector)))

        vector_label_f = torch.FloatTensor(front_vector)
        vector_label_r = torch.FloatTensor(right_vector)
        vector_label_u = torch.FloatTensor(up_vector)

        bins = np.array(range(-99, 100, self.bin_size)) / 99

        #----------------front vector-------------------------
        # classification label
        classify_label = torch.LongTensor(np.digitize(
            front_vector, bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_f = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #-------------------right vector--------------
        classify_label = torch.LongTensor(np.digitize(
            right_vector, bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_r = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        #------------------up vector-------------------
        classify_label = torch.LongTensor(np.digitize(
            up_vector, bins))  # return the index
        classify_label = np.where(classify_label > self.num_classes,
                                  self.num_classes, classify_label)
        classify_label = np.where(classify_label < 1, 1, classify_label)

        # soft label
        soft_label_x = get_soft_label(classify_label[0], self.num_classes)
        soft_label_y = get_soft_label(classify_label[1], self.num_classes)
        soft_label_z = get_soft_label(classify_label[2], self.num_classes)

        soft_label_u = torch.stack([soft_label_x, soft_label_y, soft_label_z])

        return img, soft_label_f, soft_label_r, soft_label_u, vector_label_f, vector_label_r, vector_label_u, os.path.join(
            self.data_dir, "dataset/bg_imgs/" + base_name + ".jpg")